
Technical Report CSTN-052

Simulation Modelling and Visualisation:
Toolkits for Building Artificial Worlds

D.P. Playne, A.P. Gerdelan, A. Leist, C.J. Scogings and K.A. Hawick∗

Complex Systems & Simulations Group (CSSG)
Institute of Information and Mathematical Sciences

Massey University, North Shore 102-904, Auckland, New Zealand
Email: {daniel.playne, gerdelan}@gmail.com, {a.leist, c.scogings, k.a.hawick}@massey.ac.nz

Tel: +64 9 414 0800 Fax: +64 9 441 8181

August 2008

Abstract

Simulations users at all levels make heavy use of compute re-
sources to drive computational simulations for greatly vary-
ing applications areas of research using different simulation
paradigms. Simulations are implemented in many software
forms, ranging from highly standardised and general models that
run in proprietary software packages to ad hoc hand-crafted sim-
ulations codes for very specific applications. Visualisation of the
workings or results of a simulation is another highly valuable
capability for simulation developers and practitioners. There are
many different software libraries and methods available for cre-
ating a visualisation layer for simulations, and it is often a diffi-
cult and time-consuming process to assemble a toolkit of these
libraries and other resources that best suits a particular simula-
tion model. We present here a break-down of the main simu-
lation paradigms, and discuss differing toolkits and approaches
that different researchers have taken to tackle coupled simula-
tion and visualisation in each paradigm.

Keywords: simulations; graphics; visualisation; artificial reali-
ties; model worlds.

Contents

1 Introduction 2

2 Software Architectures 2

2.1 Batch-Driven Architecture . . . . . . . . . . . . 3

2.2 Simulation-Driven Architecture . . . . . . . . . 3

2.3 Agent-Driven Architecture . . . . . . . . . . . 4

3 Simulation Considerations 4

∗Author for Correspondence

3.1 Simulation Accuracy and Precision . . . . . . . 4

3.2 Simulation Repeatability . . . . . . . . . . . . 5

3.3 Validation and Verification . . . . . . . . . . . 5

3.4 Performance . . . . . . . . . . . . . . . . . . . 5

3.5 Complexity . . . . . . . . . . . . . . . . . . . 6

4 Simulation Paradigms 6

4.1 Particle-Based Models . . . . . . . . . . . . . . 6

4.2 Field Equation Systems . . . . . . . . . . . . . 6

4.3 Event-Driven Systems . . . . . . . . . . . . . . 7

4.4 Hybrid . . . . . . . . . . . . . . . . . . . . . . 8

5 Simulation Applications 8

5.1 Particle Collision Dynamics . . . . . . . . . . . 9

5.2 Planetary Dynamics . . . . . . . . . . . . . . . 10

5.3 Animats . . . . . . . . . . . . . . . . . . . . . 10

5.4 Simulating Networks . . . . . . . . . . . . . . 11

5.5 Robotic Agent Simulations . . . . . . . . . . . 13

6 Simulation Software Tools 14

6.1 Packages and Custom Languages . . . . . . . . 15

6.2 General purpose Languages . . . . . . . . . . . 15

6.3 Libraries . . . . . . . . . . . . . . . . . . . . . 15

6.4 Rendering Tools . . . . . . . . . . . . . . . . . 16

7 Simulation Education 16

8 Summary and Conclusions 17

1



1 Introduction

Simulation and modelling continue to play important
roles underpinning the computational sciences [1,2]. Sim-
ulations come in many different forms and degrees of
complexity. These range from simple operational predic-
tion models that might be made using nothing more so-
phisticated than a spreadsheet, through the use of general
purpose modelling packages and environments to the de-
velopment and use of custom hand-crafted and optimised
simulation codes that run on supercomputers and other
dedicated hardware systems.

Some simulations applications are very well known such
as the problems of weather and climate prediction, both
of which make use of many supercomputers around the
world. Some are more mundane sounding but of high
economic importance such as modelling air-flow and drag
across new car and aircraft designs. Other applications
are more esoteric and less well known such as the vari-
ous simulation programs used to simulate the effects and
associated phenomena of nuclear explosives.

An important idea that has been progressively up taken
over the last fifteen years is Fox’s concept of simulation
on demand [3], whereby simulation programs are organ-
ised as services and can be accessed by client programs
or indeed through a web interface. This approach can
be used to make custom simulations more accessible to a
wider user population. Complex simulation programs that
are difficult to use can be wrapped up in a service-oriented
software infrastructure such as web forms or even an im-
mersive graphical interface. Another important related
idea is Smarr’s concept of steering computations [4] us-
ing advanced graphics or even totally immersive virtual
reality systems. Support for this idea enables simulation
users to home in on the parameter region of their problem
that is of interest by facilitating a fast and close interaction
between user and the simulation running on supercomput-
ing resources.

These ideas can be combined and it is possible to con-
sider how the major classes or paradigms of simulation
can make use of these notions and the tools and technolo-
gies that are already widely available. Many simulation
categories have a strong need for good visualisation ca-
pabilities. A simulation is often best debugged (during
development) and understood and interpreted (during pro-
duction use) with the aid of a visual representation of the
system configuration.

In this article we review some of the main simulation ar-
chitectural ideas (Section 2) including: batch-driven sim-
ulations (Section 2.1); systems where the visualisation
is driven by the simulation algorithm (Section 2.2) and
systems where the simulation is driven by some intrin-
sic agent component (Section 2.3). We also discuss some

cross-cutting issues (Section 3) for simulation develop-
ers including: accuracy (Section 3.1); repeatability (Sec-
tion 3.2); validation (Section 3.3); computational perfor-
mance (Section 3.4); and complexity (Section 3.5).

We believe that most simulations are based around a key
idea or paradigm (Section 4) such as particle-based mod-
els (Section 4.1); models built around partial differen-
tial equations (Section 4.2); or models based on discrete
events in time or space (Section 4.3). A complex applica-
tion may of course be a hybrid of all these (Section 4.4).

Most of the simulations applications of direct interest to
ourselves (Section 5) are complex and dynamical sys-
tems that might be based on particle collision dynamics
(Section 5.1), gravitational particle models (Section 5.2),
animat agents (Section 5.3), graph-based networks (Sec-
tion 5.4), and artificially intelligent robotic agents (Sec-
tion 5.5). In general these can all be described as com-
plex systems with highly non-linear behaviours that can
only be adequately explored using a closely coupled com-
bination of simulation and visualisation methods. A key
problem is to use the visual representation of the simu-
lated model to explore its parameter space and to try to
categorise the phenomena. Ideally the reductionist scien-
tific approach is feasible and a complex system can be de-
scribed by a general law or analytic descriptive formula.
In this sense, these simulation applications are examples
of the computational science approach [5] - using numer-
ical experiments to link theoretical ideas with experimen-
tal observations.

A number of software tools (Section 6) are available to
aid development and operation of simulation applications
such as we describe. Some standard software packages
(Section 6.1) can be used directly for some simulations,
whereas in many cases an appropriate programming lan-
guage (Section 6.2) must be used to engineer a new sim-
ulation code. Such development work often can make
use of library software for scientific computations (Sec-
tion 6.3) and visualisation (Section 6.4).

We offer some observations on how all these ideas on sim-
ulation and visualisation are typically taught to students
in Section 7 and summarise our conclusions and ideas for
the future in Section 8.

2 Software Architectures

When implementing a simulation and corresponding vi-
sualisation engine, correct software design is vital to the
re-usability and portability of the system. A simulation
that is designed in an object-oriented and modular way
can allow many components to be reused with little or no
modification. Some simulations require a high-degree of
integration between the simulation and the visualisation

2



engine which limits the modularity of the software. How-
ever, some simulations can be almost completely sepa-
rated from the visualisation and can communicate purely
via an interface. Presented here are three common sim-
ulation structures that deal with these types of simula-
tion: Batch-Driven architecture; Simulation-Driven archi-
tecture; and Agent-Driven architecture.

2.1 Batch-Driven Architecture

The Batch-Driven architecture is the simplest architec-
ture to implement as it does not involve real-time or inter-
active visualisation. Multiple instances of the simulation
are executed to provide a set of results about the simula-
tion for certain parameters or parameter ranges. These
calculated results can be then analysed or final states
turned into a single visualisation. Figure 1 shows the ba-
sic architecture of a Batch-Driven simulation, in whichthe
analysis and visualisation are performed separately from
the model.

Figure 1: Batch-Driven Architecture.

Simulations designed around the Batch-Driven Architec-
ture are most commonly intended for gathering statisti-
cal data about a well developed simulation model. Each
simulation instance is examined for some interesting phe-
nomena or some property of each simulation is mea-
sured to provide this statistical data. Statistical gathering
batches are often used to prove theories about simulations
with certain configurations.

Batch-Driven simulations are also used to search a simu-
lations parameter space. Batches of multiple simulation
instances are executed with different parameters to search
for a specific or many phenomena. These batches can be
used to show or discover what conditions are necessary
within the simulation for some event or phenomena to oc-
cur.

Two common scenarios are when a series of batch driven
simulation runs are needed to explore the parameter space
of a model or to explore the sensitivity (or lack thereof) to
different starting conditions of a model system. In the
former case managing the partial cross product of all the
possible parameter values is important [6]; in the sec-
ond case the key issue is managing an appropriate set of
(pseudo-)randomly [7] generated configurations and the
corresponding simulation runs.

2.2 Simulation-Driven Architecture

A Simulation-Driven architecture system is driven by
the simulation. The entities within the simulation interact
over time and are displayed asynchronously by the visual-
isation engine. The simulation is completely unaware that
the visualisation engine exists and the entities will inter-
act the same regardless of whether the simulation is being
visualised or not. The simulation will provide a list of
the entities within the simulation, and this list can then be
visualised.

The visualisation engine is responsible for displaying a
list of entities and handling user input to change the
method in which the entities are displayed. The visual-
isation engine will handle user input which controls only
the visualisation. This input can be in the form of options
displaying extra information about a simulation such as:
grids, trails, and energy values.

One very common type of visualisation control is navi-
gating a three dimensional scene. If the simulation is in
three dimensions then it is often impossible to see the en-
tire simulation from one view point. In this case the user
can control the visualisation and change the perspective of
view of the simulation to see different parts of the system.

Figure 2: Simulation-Driven Architecture.

The actual communication between the visualisation en-
gine and the simulation is performed by an interface ob-
ject. This object is created with specific knowledge of
both the visualisation engine and the simulation and must
be able to communicate with the simulation, retrieve the
required entities and send them to the visualisation engine
for processing. A new interface must be created for each
simulation and visualisation engine. The size of the inter-
face is minimal so implementing a new interface for each
simulation requires a small amount of effort. Figure 2 is a
diagram of the simulation driven architecture.

In this architecture the operation of the simulation is the
point of interest. The final result is defined by the inter-
actions between the entities within it based on their start-
ing configuration and other parameters of the simulation.
This result may be in the form of a forecast where the sim-
ulation predicts the state of a system in the future given a
starting configuration. Another possibility is that the vi-
sualisation of the simulation is examined by an observer
to identify interesting events or phenomena inherent to the

3



system. These simulators model systems such as Particles
(Section 4.1), Field Equations (Section 4.2) and Animats
(Section 5.3).

2.3 Agent-Driven Architecture

In the Agent-Driven architecture the simulation itself
serves a very different purpose, it provides a test-bed en-
vironment for intelligent agents. The simulation defines a
set of rules and parameters about how the entities within it
may act but allows the entities to change their state. What
actions the entities perform to change their state is de-
cided by an outside controlling agent. In this architecture
the result of the simulation is dependent on the decisions
made by the controlling agents.

These agents have a degree of control over one or more
entities within the simulation and control them according
to decisions they make based on the state of the simula-
tion. The decisions made by the agents control how the
entities act within the environment they exist in and how
they interact with the other entities. These agents can
be controlling human operators or artificial intelligence
control programs. In Figure 3 the controlling agents are
shown distinct from the simulation as they are most com-
monly separate programs that operate outside the simula-
tion.

Figure 3: Agent-Driven Architecture.

When a human operator is the controlling agent then the
simulation is no longer merely visualised by the graphics
engine, it is inextricably linked to it. The human oper-
ator processes the visualisation to determine the state of
the simulation and from this information makes decisions
about how to control its entities. This decision is then
input into the simulation via an input interface (see Fig-
ure 3). Now the user input handled by the visualiser not
only controls the method in which the simulation is vi-
sualised but also feeds back to control entities within the
simulation. Because of this the simulation can no longer
operate irrespective of the visualisation because it must
receive input from the operator via the input interface.

When the controlling agents are artificial intelligence pro-
grams rather than human operators then the input into the
simulation comes from an interface to the agent program.
The information about the state of the simulation is sent

to the agent directly without the need for the visualisation
engine. The agent program can base its decision based on
the information it receives from the simulation and then
makes its decision via the input interface.

Although the visualisation engine is not directly utilised
by the agents within this system, it is still vital for a hu-
man operator to observe the simulation and examine the
actions of the agent programs to ensure they are work-
ing as intended. In this case the human operator will still
have control over the visualisation engine with the excep-
tion that the input is no longer feeding into the simulation,
similar to the Simulation-Driven Architecture the user in-
put will simply control the method in which the simula-
tion is visualised.

The Agent-Driven architecture does not focus on the op-
eration of the simulation but rather on the decisions made
by the controlling agents. The simulation merely acts as
a restricted testing environment to examine the perfor-
mance of the agents. Each agent has a goal that it will
try to achieve by controlling its entities within the limits
of the simulation. Applications utilising this architecture
include: most modern computer games, robot soccer sim-
ulators and robotic agent simulators (Section 5.5).

3 Simulation Considerations

There are a number of important cross-cutting issues that
affect all of the simulation paradigms that we have dis-
cussed. These include: accuracy and precision; repeata-
bility; validation and verification; performance; and com-
plexity.

3.1 Simulation Accuracy and Precision

Numerical accuracy can vary from vitally important to
relatively insignificant. The importance of accuracy de-
pends on the workings and the purpose of the simulation.
Accuracy is often most important for simulations built on
the Simulation-Driven Architecture. In this architecture
the operation of the simulation is the focus, if this simu-
lation is inaccurate then the results will be inaccurate and
unreliable.

Simulations designed around the Agent-Driven Architec-
ture are often not required to be as accurate. Because
these simulators are only providing an environment to test
the controlling intelligent agents, the actual operation of
the simulation is less important. However this is not al-
ways the case. In some simulators such as robot soccer
systems (see Section 5.5, the models are designed to sim-
ulate a real-world environment where physical realism is
important.

4



In this case the agents’ properties can only be tested by a
physically realistic simulation, thus the level of accuracy
in these simulators will enhance the value to real-world
application of any algorithms developed to operate within
the simulated environment.

3.2 Simulation Repeatability

Repeatability is highly important for simulation and es-
pecially for those designed around the Simulation-Driven
Architecture. Two executions of the same simulation that
are initialised with the same configuration should both
compute the same final state or result. This repeatability
becomes increasing hard to ensure when the simulation
incorporates a degree of randomness within its computa-
tion. Simulations that incorporate randomness within ex-
periments require a method of managing and repeating it.
There is little point in discovering an interesting effect or
phenomena if the experiment cannot be repeated.

Figure 4: Configuration-Chaining Architecture.

Figure: 4 shows a way of managing random-number gen-
erator (RNG) configurations. The simulator loads a con-
figuration file which stores a starting configuration for the
system as well as the RNG. The simulation then computes
the interactions of the entities within the system over a pe-
riod of time and saves a final configuration. The configu-
ration of both the simulation and the RNG state is saved
and can be reloaded at any time. It is important to en-
sure that executing the simulation for ten time-steps, twice
should produce the same final configuration as one execu-
tion for twenty time-steps. This method of configuration
managements allows the simulation configuration to be
reloaded at the start or end of any execution.

The configuration of the visualisation is not saved within
the configuration file. The view of the system need not
be saved as the user can easily configure the visualisa-
tion to any setting they desire at any time. As long as the
simulation itself can be repeated then the user can easily
configure the visualisation engine to show the same view
or a new view of the same event. This method allows the
user to watch the same event repeatedly from different an-
gles of view to provide a better image of the workings of
the system.

3.3 Validation and Verification

Computer simulation is often used when testing the hy-
pothesis that observed behaviour from a complex system
truly emerges from a simple guessed microscopic model
for the system’s constituent parts. There may be strong
microscopic physics arguments behind the choice of the
component model or it may simply be a plausible guess.
In these experiments it is important to conduct enough
simulation runs over a properly varying set of choices of
microscopic rules before it can be reasonably concluded
that the model is consistent with the observations. One
surprising feature of complex systems is the emergent uni-
versality of some sorts of complex behaviour independent
of a wide variety of microscopic model parameters.

In some cases specific observations may be available for
example of a physical system or a modelled crowd or a
simulated network with which the simulation can be com-
pared. This is not always the case however and a common
driving force to use simulation is to help make a com-
putational science link between the two conventional ap-
proaches of theoretical analysis and experimental obser-
vation. A well-posed simulation using well understood
microscopic components can aid considerably in under-
standing the complex emergent macroscopic behaviour of
a whole system.

3.4 Performance

The performance of a computational simulation becomes
increasingly important as the size of the simulation in-
creases. Simulations must complete in a reasonable
length of time for their results to be useful. In many
cases this requires simulations to be structured differ-
ently in order to operate on supercomputers, computa-
tional grids, special hardware such as Graphical Process-
ing Units (GPUs) or even Field-Programmable Gate Ar-
rays (FPGAs) or other Application-Specific Integrated
Circuits (ASICs).

This restructuring of the software often means that the ar-
chitecture best suited to the simulation must be modified
and in some cases broken. In many cases there is no way
to avoid this situation, sometimes clean architecture de-
sign must be sacrificed for the necessity of performance.

As Knuth warns, premature optimisation is undesirable
[8]. This should not be taken to mean that subsequent
optimisation is unimportant. It is. Many simulations
projects would be completely infeasible without careful
optimisation. A classic case is the work reported in [9]
which took many CPU-years even with assembler-level
optimisation.

5



3.5 Complexity

It is increasingly the case that we are targeting simulations
of complex systems that may involve a hybrid of the tech-
niques discussed in this article. This inevitably leads to a
more complicated simulation architecture.

An overly complicated simulation inevitably raises con-
cerns about validation and verification and also repro-
ducibility, and often performance. A clean simulation
software architecture that can be validated as individual
components helps allay these concerns.

Reuse-ability - which might deserve to be a criteria in its
own right - is closely tied to complexity and performance.
Generally we hope to have very modular software that can
be unit tested and verified. This additional effort is amor-
tized over greater use if the module is widely applicable.
Unfortunately achieving performance often involves com-
promises and tradeoffs that reduce reuse and raise code
complexity.

4 Simulation Paradigms

There is considerable variety in the paradigms of simula-
tions used for scientific research. The method of visual-
isation for each of these simulation paradigms is equally
variable. This section presents a number of simulation
paradigms and discusses the methods and libraries used
to visualise them.

4.1 Particle-Based Models

Particle dynamics simulations model the motion and be-
haviour of particles or objects in space. A particle is con-
sidered to be a single point mass in space with a position
and velocity [10,11]. A particle’s motion is normally con-
strained by Newton’s Laws of Motion [12] and by some
potential equation or some external force acting upon all
particles. The potential equation of a simulation describes
an attractive/repulsive force between a pair or particles. In
each simulation, particles have a set of properties such as
radius, charge or spin that also define their state in addi-
tion to their position, velocity and mass.

These common properties create the opportunity to graph-
ically display the particles simply as an object in space ac-
cording to its size, shape and position in the system. The
particles’ motion over time is rendered as video with each
frame showing the particles at different positions. This
visualisation can be done in real-time as the simulation
runs with lower quality, or be rendered as a high-quality
movie recreated from recorded positions after the simula-
tion has finished. These particle simulations can be run
in any number of dimensions but once again our visuali-

sation of them is limited to the three-dimensions we have
the capability to display.

Like the field equation simulations (see Section 4.2), par-
ticle simulations are best suited to the Simulation-Driven
Architecture. The focus and interest of the simulation is
the behaviour and interaction of the particles. Within a
particle simulation the two main issues are: their relative
motion and attraction due to the potential between them;
and their behaviour when the particles collide. This is all
focused on the simulation, the visualisation engine’s pur-
pose is to simply display the particles.

We discuss the application of the particle model to the
problem of particle collision fluid modelling in Sec-
tion 5.1 and gravitational astro-dynamics in Section 5.2,
but this paradigm is also useful for modelling atomic or
molecular systems. Totally unphysical “pseudo particles”
can also be used to assist in rendering materials such as
flowing water or the moving cloth. Pseudo particles can
form a tethered system of anchor points to form a dynamic
surface upon which a texture map can be draped for ren-
dering.

4.2 Field Equation Systems

Field equations simulators model the behaviour of micro-
scopic atoms over a discrete macroscopic cell. The mod-
elled system is split into discrete cells and the state of each
cell is defined by a set of properties. Every cell interacts
with the cells in the area or volume surrounding it and
changes its state according to the properties of the sur-
rounding cells and field equations of the simulation. Visu-
alising these simulations involves displaying some prop-
erty or combination of properties that define each cell in a
graphical way. This is often performed by displaying each
cell at its appropriate position and with a colour defined
by the properties of the cell.

These field equation simulations can be created for any
number of dimensions, however our visualisation tech-
niques are currently limited to three. Each dimension in-
volves displaying the cells in a different arrangement, in
general – one-dimensional simulations are a line of cells,
two dimensions require a plane, and three dimensions are
represented by a cube of cells.

Visualising these cells in one and two dimensions is rela-
tively easy as a simple 2D graphics package can be used
and a view of the entire simulation can be easily seen.
The visualisation of a cube of cells requires more care-
ful consideration. A 3D graphics library must be used to
visualise the system and should provide the user with a
way of changing the view of the scene but also provide a
method of seeing inside the cube. If all the cells of the
system are entirely opaque then only the outside layer of
cells can be seen at any point in time.

6



Figure 5 shows the visualisation of a three dimensional
field equation. This cube of cells has been displayed based
on a concentration of A and B atoms. If a cell contains
mostly A atoms then it is coloured blue and is entirely
opaque. However if the cell contains mostly B atoms then
it is coloured yellow and is displayed as almostly entirely
transparent. This allows the state of the cells at the cen-
tre of the cube to be seen from the outside. This is one
method of displaying a cube so the state of all cells can be
seen.

Figure 5: A three-dimensional visualisation of the Cahn-
Hilliard-Cook field equation.

Figure 5 is in fact a visualisation of a three-dimensional
Cahn-Hilliard-Cook field equation simulation. The Cahn-
Hilliard Cook equation models phase separation in a bi-
nary fluid. Started from a random uniform configuration,
surface tension effects drive the field cells to gradually
coalesce and merge into separate domains. This domain
separation forms the emergent camouflage pattern seen in
the visualisation. This equation can be used to model the
phase separation in cooling alloys to discover the opti-
mum cooling process for forming real-world metals [13].

The result of the model for a given starting configuration
is the focus of the simulation. A study is made of the
different exhibited behaviours of the model, that are de-
pendant upon control parameters such as temperature for
example. Thus these simulations are best suited for the
Simulation-Driven Architecture. The simulation is devel-
oping independently from the visualisation engine and is
unaware of its existence. The visualisation engine used to
create figure 5 was created using the JOGL [14] graphics
library.

The visualisation engine uses the Java interfaces to han-
dle the user input and uses the JOGL functions to change
the view in a ’fly through’ camera style. This allows the
user to navigate through the scene using the mouse and
keyboard. As the JOGL engine is designed as an interface
between Java and OpenGL, it is obviously best suited to
operating with simulations implemented in Java. How-
ever, it would be a relatively simple process to convert
this JOGL visualisation into a C++ OpenGL engine.

4.3 Event-Driven Systems

The event driven paradigm is commonly used in cases
where some aggregate or emergent behaviour arises from
the collective interactions of many discrete participants.
Events might be arrivals of data packets in a network, or
transactions in a management situation, or encounters and
conflicts in a defence scenario.

Figure 6: An aggregate on a discrete 2D lattice, grown
from a central seed particle by diffusion-limited aggrega-
tion.

One example application is that of diffusion-limited ag-
gregation (DLA) on a discrete lattice. Figure 6 shows a
fractal cluster grown using a diffusion-limited aggrega-
tion algorithm [15]. This is a form of event driven simu-
lation, where a seed cell planted at the centre of the image
is gradually grown by releasing ”walker” particles around
it. The walkers diffuse randomly and attach themselves
to the growing aggregate. This cluster was grown on a
square mesh by walking and attachment events but it is
also possible to employ this algorithm on continuous x-y
coordinates. This aggregate has an approximate fractal di-
mension of d=1.6, roughly intermediate between 1 and 2

7



spatial dimensions. It is also possible to grow aggregates
embedded in a 3-D space.

Many physical system can be modelled by the discrete
movements of atoms or cells in a system. One famous
discrete event model is Conway’s game of life [16], which
is a cellular automaton. Each spatial cell has very simple
microscopic rules governing its temporal behaviour but
some very complex and unexpected patterns emerge from
the overall collective. Monte Carlo lattice models also fit
into this paradigm. Models such as the Ising model [9],
Potts model [17], Heisenberg model and clock models are
essentially microscopic automata that interact with their
local neighbouring cell and through a stochastic dynami-
cal scheme or pseudo time imposed upon them they give
rise to complex phenomena such as phase transitions [18].

Figure 7: Configurations of a lattice Ising Model of mag-
netic spins at different temperatures (vertically) and long-
range connection probabilities (horizontally)

Figure 7 shows some snapshots of the Ising model on a
128 × 128 site lattice at different temperatures and long-
range connection probabilities. The phase transitions re-
sult in very different cluster shapes and resulting magnetic
behaviours.

Many systems that have a continuous time scale can also
be modelled by specific events that occur at arbitrary
times and which can be modelled through queues. These
problems are notoriously difficult to fully distribute or
parallelise although a distributed simulation can manage
separate clocks or time queues that can be rolled back or
time-warped to obtain synchronicity across all participat-
ing computers [19].

4.4 Hybrid

A particular simulation to model a coupled set of phenom-
ena may need to make use of a hybrid approach. In some
cases a hybrid model might link together multiple compo-
nents of an overall model, each of which fit the same ba-
sic paradigm. An example of this would be simulations of
the global weather or climate [20]. Typically models run
by national bodies such as the UK Meteorological Office
will comprise separate field-based models for the atmo-
sphere and the ocean. These may be completely separate
codes that exchange data or they may be a single inte-
grated simulation program. Simulation variables such as
temperature and pressure fields are separately integrated
in the ocean and atmosphere - likely using different model
meshes and resolutions, but are coupled together to ensure
the correct physical boundary conditions are available to
the separate model components.

In the case of a weather simulation, real-time events such
as rain, sunshine, and other measured observations are
also incorporated into the running simulation as they be-
come available. Operational weather prediction codes are
typically based around this hybrid structure [21].

Other predictive simulations such as those used to pre-
dict extractive yields in oil reservoir systems are typically
also a hybrid of a field model and discrete event infor-
mation [22]. Particle methods have widespread uses for
straightforward systems such as planetary dynamics or
molecular dynamics. For some systems such as simulat-
ing very low density fluid flow around orbiter spacecraft
re-enty for example, a hybrid model of particles and field
equations has to be employed [23].

A highly interactive simulation could be constructed
where the human user agents are modelled as a stream
of discrete events. The hybrid paradigm is therefore quite
common in many practical complex simulation applica-
tions.

5 Simulation Applications

There are many simulation applications that make use of
the paradigms and ideas we discuss in this article. In the
following sections we focus on applications of: particle
collision dynamics; planetary dynamics; animat agents;
complex networks; and robotic agents. Some of these
map neatly to a single paradigm as discussed above, how-
ever some involve a hybrid architectural approach.

5.1 Particle Collision Dynamics

Particle simulations that incorporate a collision dynamics
model can be used to simulate the microscopic interac-

8



tions within many complex systems. Particles within such
systems are no longer considered to be simple point par-
ticles but also define an area or volume. This particles are
generally modelled as hard spheres with a variety of col-
lision models. Systems that can be simulated by a large
number of hard sphere particles include: aerodynamics,
liquids, sand and metal alloys [24].

Lennard-Jones Potential

One method of simulating hard-sphere collisions is
through the definition of the potential. By specifying po-
tential equation that repulses two particles if they are too
close together has the effect of making the particles re-
flect off each other. One potential commonly used for this
purpose is the Lennard-Jones potential [10, 25]. This is
defined by the formula:

V (r) = 4ε[(
σ

r
)12 − (

σ

r
)6] (1)

where V (r) is the potential energy between two particles
as it varies with radial distance r.

-150

-100

-50

 0

 50

 100

 150

 0.3  0.4  0.5  0.6  0.7  0.8

V(
r)

r

Figure 8: The Lennard-Jones potential.

Figure 8 shows that when the particles come within a cer-
tain distance of each other, the potential becomes repul-
sive and they reflect off each other. This method of col-
lision handling does not model particles as perfectly hard
spheres that collide but rather as point particles that re-
pulse each other when in close proximity. This is a very
simple method of simulating particles collisions but does
not provide an instantaneous perfect reflection at the point
the two particles collide.

Reflection

The reflection model only affects particles if they have
collided. At the end of each time-step the model searches

for collisions between two particles by testing if their vol-
umes overlap [26]. If a collision is detected, the conver-
gent aspect of the particles’ velocities are reversed so the
particles reflect perfectly off each other. As the simula-
tions compute the particles’ motion over a discrete time-
step, there will be an error in the collision detection as the
particles can actually move into each other, thus causing
the overlap. This is physically unrealistic and causes a
certain degree of error, however with a reasonable time-
step this error can be reduced to an insignificant level. A
more physically accurate but computationally expensive
collision model is the reflection step-back model.

Reflection Step-Back

The reflection step-back model is designed as a more
physically accurate version of the reflection model. When
two particles are found to be overlapping, the exact point
in time at which the particles’ collided is computed and
the two particles are moved backwards to this time [26].
The convergent velocities of these particles are then com-
puted and reversed and the two particles moved forward
to be in time with the rest of the system (see Figure 9).

Figure 9: A diagram of two particles colliding with the
Reflection Step-Back model.

This is a very accurate and feasible model in the di-
lute case, however it becomes computationally expensive
when there are a large number of particles in close prox-
imity. When there are many closely packed particles, each
collision often results in another collision and so on. The
large number of time step-backs required to compute the
final positions of the particles can cause the simulation to
slow down dramatically. The reflection step-back model
is very physically accurate but under certain conditions
can become too computationally expensive to complete
in a reasonable length of time. Another problem that af-
fects both this model and the reflection model is that they
may miss a collision. It would be possible for two very
fast moving particles to move through each other in a sin-
gle time-step and if they are not overlapping at the end of
the time-step no collision will be detected [26].

9



5.2 Planetary Dynamics

Figure 10: A visualisation taken from a particle system
that simulates the Solar System. Image created using the
JOGL Z-Buffer engine [14].

Figure 10 shows the visualisation of a three-dimensional
particle simulation. This simulation models the specific
case of planetary interaction. It computes the motion of
planets which are attracted together by the force gravity.
These planets are visualised as spheres with textures ap-
plied to their surface to make them look more realistic
and individually recognisable. The planets in Figure 10
should be easily recognisable as the simulation and vi-
sualisation engine used to create them was configured to
simulate our solar system. The visualisation has the added
detail of displaying trails behind the planets as they move
to convey more information to the observer by making it
easier to see the path of the planets. The details of this
model and some of its implications are discussed in detail
in [27].

The actual visualisation engine used to create this image
has been implemented in JOGL and is almost identical
to the one used by the Cahn-Hilliard-Cook field equation
simulation (see Section 4.2). Both these simulations are
designed using the Simulation-Driven Architecture and so
the visualisation engine is completely separate from the
simulation. Thus the same visualisation engine can be
used to display both models with little modification.

5.3 Animats

Animat or spatial agent models are widely used in study-
ing artificial life but also for studying sociological as well
as physical systems. Animat models such as Tierra [28]
and Avida [29] have become widely used tools for study-
ing emergent behaviour in artificial life systems. We
have developed our own spatial agent model based on
artificially intelligent predator and prey agents that co-
exist and interact together in a two-dimensional simu-
lated world. There are two unusual features of our ani-
mat model. The system has a large number of very simple
microscopic agents - typically systems of up to ≈ 106 an-

imats are computationally feasible. The model has a very
definite spatial coordinate space and animats interact with
other animats within a distance of up to around fifty grid
cells. We have discovered a number of emergent or col-
lective phenomena from this model, including boom-bust
predator prey population dynamics and associated spatial
fluctuations [30]. An interesting discovery was the emer-
gence of spiral wave group fronts arising from the preda-
tor and prey interactions [31].

To make effective use of this simulation model we had to
develop not only a very efficient simulation program [32]
that makes use of multi-phase synchronisation techniques
[33], but also a number of metric and quantitative analysis
techniques such as semi-automatic cluster classification
[34].

Although some attempts have been made to use general
purpose simulation packages and languages, for the most
part models such as our animat systems and those of other
researchers must rely on custom simulation codes. Vi-
sualising the results can sometimes be an integrable part
of such codes, but to date most work has relied on the
use of static configuration dumps that can be rendered as
static images, or possibly made into an animation movie
sequence by simply exporting many static images in time.

i) ii)

iii) iv)

Figure 11: A separation of animat components: i) is the
original; ii) the system is shown without the predator
corpses; iii) only the live predators are shown; iv) only
the live prey are shown.

Figure 11 is taken from [31] and shows some of the emer-
gent spatial structures when predator and prey systems in-
teract. The spiral battlefront is particularly pronounced.
Studying animations of the formation and dissolution of
these spirals was particularly helpful in understanding the
animat collective phenomena.

10



Our model has had some other surprising uses, such as for
modelling resource scarcity effects in ecological systems
[35] and for simulating a computational grid - or network
of compute resources [36]. Simulating networks in a more
general sense is another important application area.

5.4 Simulating Networks

Many interesting physical, technological and social sys-
tems can be characterised as a network or graph. While
some networks are small enough that they can be directly
visualized and various direct counting methods can be
used to study their properties, many systems are too big
for such easy assimilation. It is however possible to de-
velop a number of useful metrics or quantifiable charac-
teristics that can be used to categorize network systems.
Some examples include simple ones such as ratios like
edges per node, or fraction of nodes in a a single compo-
nent; or relative number of components in the full graph.
Other more complex characteristics can be derived from
colouring the graph to identify its particular components;
analysing the pathways through the graph to determine
mean minimum and maximum values, or analysing the
distribution of loops or circuits in the graph.

Many models can be studied in terms of undirected graphs
where we consider nodes and edges, and treat a link from
node A to node B as the same as one from B to A. How-
ever, certain biological systems and other problems re-
quire the use of directed graphs, for which the node reach-
ability can vary depending upon the starting point, even
for a fully connected graph. In such cases the pattern or
circuits or loops tends also to be more complex.

While some data sets can be studied directly as individ-
ual graphs of importance in their own right, a useful ap-
proach to studying the properties of networks more gener-
ally is to consider graph models that are generated using
pseudo-random numbers to draw many samples from a
generating formulae. One then samples some metric over
many different network samples and attains insights into
the general characteristics of the class of model. Inves-
tigating properties such as the size of the graph can give
insights into the scaling properties and may allow deduc-
tion of some limiting behaviour for very large networks
that would be infeasible to measure directly.

The simplest case is that of random graphs [37], where
each of N nodes might connect to every other node with
some probability p and the distribution of edges per node
is therefore Poissonian. We can readily generate many
such sample random graphs that are all different but are
in some sense representative of their class and are char-
acterised by N, p. The notion of simulating graph mod-
els thus involves generating many such particular graphs
and measuring properties of each one, and studying what

properties tend to a sensible characteristic average that is
representative of the class and which can ideally be linked
through some theoretical model back to the generating or
characteristic parameters.

Many such graph or network models exist and we describe
some in [38]. One particularly noteworthy general class
that has attracted much attention in the literature recently
is that of small-world graphs or network systems.

Small-World Networks

Networks are said to show the small-world effect if the
mean geodesic distance (i.e. the shortest path between
any two vertices) scales logarithmically or slower with
the network size for fixed degree k [39]. They are highly
clustered, like a regular graph, yet with small characteris-
tic path length, like a random graph [40]. What attracted
the attention of scientists from many different disciplines
and caused them to investigate such networks is that they
can not only be found in books about graph theory, but in
social [41–43] and biological [44–46] networks as well.

The small diameter of small-world networks also makes
them interesting for computer scientists. Routing algo-
rithms for large-scale, distributed computer networks (e.g.
peer-to-peer networks) try to minimise the number of
hops needed to send a message from one node to any other
node in the network, while also making the networks ro-
bust against random failures or deliberate attacks. At the
same time they attempt to keep the number of neighbours
(i.e. the routing table size) of each node small to reduce
the synchronisation overhead of the network. A com-
puter network that possesses the characteristics of a small-
world network might be able to fulfill these requirements.
One of the main challenges in the design of such a rout-
ing algorithm is that it has to be able to find the shortest
path—or at least a short path—between two nodes with-
out the knowledge of the entire network structure.

The graphs illustrated in figures 12 and 14 are described in
the following section and show, depending on the chosen
parameter values, small-world characteristics.

Network Visualisation

Network simulations often use the batch-driven approach
(Section 2.1), in which multiple realisations of the same
network model are generated for each set of parameters.
The metrics of interest are then extracted from each of the
instances and averaged to generate charts that can be anal-
ysed more easily. To make the results even more mean-
ingful, it is good practice to also calculate the standard
deviations from the mean values and to visualise them in
form of error bars on the chart.

11



Figure 12: Visualising network metrics in form of charts
using Cartan [47]. This chart shows the mean geodesic
distance and number of clusters of Watts’ α-model aver-
aged over 100 realisations of the graph each. The ring
substrate guarantees that the network will be fully con-
nected and, therefore, the number of clusters is always 1
in this case. The alpha-values influence the clustering be-
haviour of the model and range from 0.0 (high clustering)
to 10.0 (largely random). The network size N = 1000
and the average degree k = 10.

An example of such a chart is shown in figure 12. It illus-
trates how the mean geodesic distance and the number of
clusters are related in Watts’ α-model [48]. The average
shortest path length is small for small α if no substrate is
used, but the network is not fully connected. Thus, the
distance could also be said to be infinite. The geodesic
distance peaks when the different clusters merge together
for α-values between 2.5 and 3.0 and then shrinks again
when the network becomes more and more random with
increasing α. If, on the other hand, a ring substrate is
used, then the network is always fully connected. In this
case, the geodesic distance is large for small α, because
the probability to create random long distance links is
very small. It can also be seen that the substrate does not
affect the results for α ≥≈ 4.

To get an impression of the network and better under-
stand its properties, it is often a good idea to look at a
few instances graphically. Which tool is best suited for
this task depends on the graph structure. For some graphs
it is sufficient to represent them in 2-dimensions, whereas
other networks, for instance cubic graph structures or lat-
tices with connected borders like the one illustrated in fig-
ure 13, are better represented in 3-dimensions.

The tool used to visualise this graph is UbiGraph [49]. It
consists of two separate components. The actual render-
ing is done by the server, which is currently only available

Figure 13: A regular 30 × 30 lattice visualised with Ubi-
Graph.

as compiled binaries for Linux, Mac OS X and Windows.
It uses OpenGL and can utilise up to 8 cpu cores. The
client bindings, which use XMLRPC, are available for a
number of languages including Java, C(++), Python and
Ruby and are distributed under an open source license.
UbiGraph supports the dynamic visualisation of graphs
through XMLRPC API calls. It enables the manipulation
of a number of graph properties, such as the size/width
or colour of individual vertices and edges, which can be
useful to highlight certain parts of the graph.

While the force-directed layout algorithm used by Ubi-
Graph often produces good results, it is not always what
the user wants. Some networks have a regular underly-
ing structure—like a ring, lattice or cube—with only a
few additional or rewired “long-distance” links connect-
ing vertices that are not directly adjacent to each other.
The largely regular structure of the network quickly gets
lost with this layout algorithm, even though the user may
prefer to retain it. Due to the closed nature of the Ubi-
Graph server component, it is not possible for us to add
further layout algorithms.

GraViz [50] is a graph tool that provides some of these
features as illustrated in figure 14. It enables the user to
manipulate the graph and supports the automatic layout of
rings and chains. The image shown is of a ring of N = 50
vertices, initially configured with average connectivity of
k = 2 but with vertices randomly rewired with probabil-
ity of p = 0.2. The originally connected ring is now frag-
mented into three separate clusters and the path between
vertices 37 and 8 as calculated by the program dynam-

12



Figure 14: Using GraViz to draw a graph with N = 50
vertices and an average degree k = 2. The graph started
of as a ring and then had its edges randomly rewired with
the probability p = 0.2% [40].

ically, is no longer a simple one. GraViz visualisation is
only 2-dimensional and it does not scale very well to large
graphs of more than about one thousand nodes. It does
also not provide an API to dynamically modify the graph
from another program. Other widely available tools for
manipulating graphs and graph oriented diagrams include
yEd (see [51]) and xfig (see [52]). The former supports
layout and manipulation of graphs and can read various
graph format files. The latter is a commonly used draw-
ing tool that uses a markup-based file format and which
can also be used for drawing or rendering graphs. Unlike
GraViz however, these tools do not incorporate path and
analysis algorithmic capabilities.

Although the batch-driven approach is often appropriate
for network simulations, observing the growth of the net-
work visually can sometimes give additional insight into
the network structure or make it easier to understand cer-
tain properties of the final network. Thus, the simulation-
driven approach (Section 2.2) can also be useful for net-
work simulations.

5.5 Robotic Agent Simulations

Complex simulations of real-world environments require
a combination of event-driven, particle, and field visual-
isation models in order to provide a realistic visual rep-
resentation. Whilst we have used particle visualisation to
approximate more subtle real-world phenomena such as
smoke and dust, as seen in Figure 15, terrain and land-

Figure 15: Real-world simulations often combine differ-
ent visualisation models.

scapes are generally field models, and the majority of
visualised components (projectiles, vehicles, people) are
treated as entities steered by an event-driven visualisation
framework. In real-world three-dimensional simulations,
elements of the three visualisation types are combined in
a realism-calculation balance to produce convincing rep-
resentations of the world whilst retaining an efficient ren-
dering cycle. Note that this balance does not necessar-
ily mean that the accuracy of the underlying simulation
model need be adjusted in all cases, but rather the realism
quality of the visualisation layer.

Figure 16: A Visualisation of a Soviet T-28 Tank Created
from Blue-Prints and Photographs.

Visual immersion is an important aspect of real-world
simulation as these simulations are typically run to either
involve a human interactively, or represent the actions of
intelligent agents to a human audience - the value here is
then psycho-visual. An excellent example of this type of
application is in modern film production - the MASSIVE
software has been used to simulate huge numbers of inter-
acting intelligent agents as actors in the Lord of the Rings
trilogy [53]. Visual immersion can be aided by creat-
ing accurate models of real-world entities to-scale. This
is best done using three dimensional modeling software

13



to build a mesh of the vehicle from real blue-prints. We
can then use photos of the actual real-world object, taken
from different angles, to accurately texture the model [54].
Our attempts at this process made use of the powerful,
and freely available tools Blender3D and the GNU Image
Manipulation Program (the GIMP) are illustrated in Fig-
ure 16. We have also made use of audio capture and ma-
nipulation software ffmpeg, and Audacity to record and
reproduce the authentic vehicle sound effects of the sim-
ulated vehicles.

Figure 17: User-Assisted Dynamic Landscape Genera-
tion.

Most realistic terrain in 3D simulations is now generated
by fractal modelers, which provide pseudo-realistic ter-
rain but allow very little design control to scenario de-
signers. The terrain illustrated in Figure 17, is however
based on a novel method, in that it is visually created in
3D by hand, in real time, from within the simulation itself,
with a variety of WYSIWYG (”What you see is what you
get”) tools that we have built into the simulator. This work
is based on the ETM2 (”Editable Terrain Manager”) for
the OGRE graphics library [55], and gives us the added
advantage that we can allow simulated elements in our
event driven models to deform the landscape during simu-
lation according to the physics model. We have, however,
through OGRE, made use of algorithms such as ROAM-
ing (Real-time Optimally Adapting Meshes) terrain [56]
to optimally display the environment.

Combined visualisations can be quickly constructed by
assembling an effective toolkit of different libraries and
modules. There are now a huge variety of freely available
open-source tools, libraries and high-level wrappers that
offer very sophisticated visualisation technology. It is no
longer the task of simulation builders to develop visualisa-
tion techniques for their simulations from the ground up,
but rather to assemble a collection of these libraries and
other resources that best suit the nature of their particular
simulation project.

6 Simulation Software Tools

While simulation as an approach to computational sci-
ence is a powerful method, it is only as good as the sim-
ulation models and the software that implements them.
Many useful small scale simulations can be performed
with existing packages such as problem solving environ-
ments like Matlab, Mathematica, Maple or even with sim-
ple calculations framework tools like spreadsheets.

However, for many application areas a custom simulation
program is necessary to be able to handle large systems or
novel algorithms. State of the art computational science
typically needs state of the art simulation codes and the
associated measurement and analysis codes.

As discussed elsewhere in this article, visualisation tools
go hand in hand with simulation codes, both as a power-
ful tool for analysis and for gaining insights into the sim-
ulated systems, but also as a debugging and development
tool. Often unusual effects in a simulation can be identi-
fied as artifacts of the simulation from an accompanying
visual representation. In some cases the phenomena turn
out to be genuine emergent features of the model and this
can be very exciting to observe.

Simulation programs can be written in any appropriate
programming language, but some languages and systems
do lend themselves better than others to the requirements
of:

• a clean and unambiguous syntax;

• some degree of portability in the sense of being able
to attain repeatable and reproducible results from the
same code on different hardware/operating systems
platforms;

• support for and preferably pre-tested libraries of ad-
vanced data structures such as lists, sets, matrices
and so forth.

• support for and existence of high level libraries for
common simulations related programming tasks -
typically numerical libraries for linear algebra, spec-
tral transforms, random number generation, parame-
ter fitting and so forth;

• a practical and preferably portable means of linking
to a visualisation or rendering graphics library;

• and some means of optimising or at least address-
ing computational performance and memory require-
ments. In some cases a quality optimising compiler
suffices, for other simulations a means of parallelis-
ing the algorithm and therefore support for parallel
programming is required.

14



6.1 Packages and Custom Languages

Tools such as Matlab, Mathematica, Maple are often eas-
ier to use for simulations work by non-programmers al-
though these tools typically support some sort of embed-
ded high level programming language of their own. Our
personal experience of these tools is that they are very
good and useful up to a point. However, as general pack-
ages they may not be able to run a specific simulation
model as fast as a custom code, and they may not nec-
essarily use an optimal data representation for a particular
problem. They are therefore often restricted to study of
smaller model systems than a custom code might be able
to tackle.

These tools are inevitably proprietary in nature and al-
though portable across many hardware and operating sys-
tems platforms there are cost and licensing considerations
in running a simulations based on them. Experience sug-
gests they are excellent for rapid prototyping of simula-
tions ideas and are often good learning tools for explain-
ing small scale models.

These tools do represent a lot of systems development
work and although there are some public domain alterna-
tives such as GNU Octave, there is quite a wide variation
in the different capabilities of these similar products and
systems.

Like any proprietary or platform specific tool, there are
also concerns about “lock in” and the difficulties in
switching to a different tool set once a detailed simulation
code has been developed. For a combination of this rea-
son and those of performance, a custom simulation code
developed in a general purpose programming language is
often preferable.

6.2 General purpose Languages

Simulations can obviously be written in any program-
ming language, but some languages have been tradition-
ally more popular than others. As discussed one advan-
tage of a custom simulation is that it exposes more op-
portunities for optimisation - either in terms of speed or
memory and other resource utilisation. A great deal of
scientific simulation code has been traditionally devel-
oped in Fortran and its various versions. Some notewor-
thy simulation code repositories for Fortran codes include
the Computational Physics archives (CCP12, CCP5 - see
www.ccp5.ac.uk).

Arguably modern Fortran versions such as Fortran 2005
do incorporate many modern language design features
and software engineering support capabilities. Fortran’s
support for complex numbers is still an attractive fea-
ture for many simulations based on numerical algorithms.
However it can also be argued that despite best efforts,

Fortran syntax is struggling under the burden of modern
language design ideas and it is not widely taught as a gen-
eral purpose language.

Compiled languages based on the C syntax and semantics
have become quite prevalent. C++ and Java are widely
used for simulations development, and Java in particular
with its strong portable graphics support is widely taught,
widely used, and appears to have a relatively long term
future. Newer variants such as the D language have ab-
sorbed many of the modern improvements in language de-
sign and might displace C, C++ and proprietary versions
such as C# in the future.

Languages like Ada and Pascal have had important roles
in custom simulation code development, but the sociolog-
ical phenomena surrounding open development commu-
nities, widely available non- proprietary compilers and the
widespread use of some languages for teaching purposes
will likely continue to favour the C/Java syntactic family
of languages.

Scripting and semi-interpreted languages such as Python
[57] and Ruby [58] have made great inroads into the sci-
entific community in recent years. It is certainly possible
to use these languages for simulations work directly, al-
though they will perhaps continue to find favour as inte-
gration languages for tying together fast simulation cores
in C/C++ or Java. The Jython interface to Python is par-
ticularly helpful in this regard.

6.3 Libraries

A great many useful independent library projects arose
during the Fortran era of scientific computation. Some
well known examples include: Linpack [59]; Lapack;
EISPACK [60]; the Harwell Subroutine Library; NAG Li-
brary and some well know library toolkits like the popular
Numerical Recipes codes [61]. Generally those libraries
had their origins with Fortran like languages and although
successful ports or language interface layers have been
developed for use with other languages such as C or Ada
and Pascal, for the most part the ideas and structure em-
bodied in many numerical libraries clearly show “Fortran
thinking.”

Similarly, modern graphical libraries typically trace their
origins back to the need for Fortran bindings and some of
course were written in Fortran. OpenGL and its predeces-
sors still also show a certain amount of “Fortran think-
ing” too. Sun Microsystems’ Java 3D is something of
an exception and exhibits a rather different architectural
structure more in keeping with modern language design,
use of object orientation and high-level thinking. Per-
haps surprisingly, this has not caught on in terms of user
popularity as might have been expected and Java inter-
faces to OpenGL such as JOGL are sometimes preferred

15



for some simulations purposes where performance opti-
misation needs to be fully exposed to the developer. We
anticipate that this may be an important area for future
development for the next generation of integrated and vi-
sualisation friendly simulation languages.

Typically a modern language will come with a standard
development kit or library that will include all the nu-
merical and visualisation components we have discussed
above. Java is perhaps the best known example, and while
the Java language itself is relatively compact, the asso-
ciated libraries and development kit suite are quite com-
plex and difficult for a programmer to retain in his mind
at once.

Good quality libraries that make use of parallel program-
ming ideas are still quite rare. The parallel and vector
facilities in ScaLapack [62] are some of the few really
good, usable parallel numerical libraries. This is another
important area for future development as parallel comput-
ing algorithms return to the forefront for use in GPUs and
multi-core processors.

6.4 Rendering Tools

Rendering tools fall into a number of different categories,
all of which are typically necessary for simulations work
in computational science. Graphical libraries that support
2D and 3D interactive-time rendering on screen are most
useful for linking directly with custom simulation codes.
As discussed there are many such libraries available, but
the current most well known and useful are those based
on the OpenGL interface [63]. The Java interface to this
is known as JOGL [14] and is also easy to use and of
high performance. Sun’s newer library - Java3D [64] is
powerful and also easily used from Java.

Post production rendering is often done using static con-
figuration dumps from a simulation. Often tools such as
physical rendering or ray-tracing are used for this. The
most well known and public domain ray tracing tool is
POVRay [65].

Other semi-graphical capabilities such as graphical inter-
face widget libraries for buttons, checkboxes, sliders and
other controls are also often necessary for interactive sim-
ulation codes. It is desirable that the chosen library be at
least compatible or interoperable with the core graphics
library. The Java Swing 2D [66] graphics and associated
windowing tool kit is a useful such library. Other systems
such as Tcl/Tk [67] are compatible with programming
languages such as the C syntax language family and also
scripting languages such as Python [57] and Ruby [58].

Finally it is important to have straightforward post pro-
duction analysis tools for plotting data in x-y or x-y-z for-
mat. The most well known tool for this is Gnuplot [68]

which has many fine features. Cartan [47] was developed
as an interactive integrated plotting and parameter-fitting
alternative.

Other data analysis can often be done with static images
dumped to file, and useful toolkits for manipulation of 2D
image data include the interactive tools xview [69] and
GIMP [70] but also the PNM “anymap” image libraries
[71].

7 Simulation Education

Computational scientists emerge from many different ed-
ucation routes. Recent interest in computational science
as a discipline in its own right has raised the question as
to whether there should be specific degree programmes
or at least courses on computational science in general
and simulation methods in particular [72]. It seems likely
that for the foreseeable future many practitioners will un-
dertake a typical high education degree through a tradi-
tional discipline be it computer science, applied mathe-
matics, physics, chemistry, biology, engineering or some
other applied area before possible specialisation in com-
putational science at some sort of postgraduate level.

Arguably however there are important missed opportuni-
ties for teaching simulation techniques at undergraduate
level and certainly for making them part of a final year
project experience.

One noteworthy textbook on simulations lore and specific
projects in physics applications is “An Introduction to
Computer Simulation Methods” [10]. Another useful ed-
ucational resource is the bi-monthly magazine “Comput-
ing in Science and Engineering”, published by the IEEE
Computer Society which contains reviews of various tools
and methods and other practitioner and applications arti-
cles.

Many universities do offer specific courses on “compu-
tational methods” or “numerical methods” and provide
project mechanisms for students to learn how to work in
these areas. At present however it is probably true to say
that most students will learn about simulations techniques
in a rather ad hoc manner from working in or alongside
research groups. Learning about graphics and rendering is
likely to take place at the undergraduate level. Most Uni-
versities will offer some undergraduate course on com-
puter graphics and some may also offer project experience
using advanced rendering tools.

8 Summary and Conclusions

We have discussed a number of simulation paradigms and
example applications. We have reviewed some of the

16



complex systems issues facing simulation developers and
users and have reviewed a number of the software tools
and technologies that can be employed for a successful
computational science experiment.

We believe that it is very helpful to have an advanced
graphical rendering or visualisation capability that is
closely coupled with a running simulation. This is an aid
both to the simulation developer as a debug aid but also
to the user for interpreting the simulation results and for
steering the computations into relevant and interesting re-
gions of the simulation model’s parameter space.

As we have shown, the overall architecture can be driven
from the simulation or agent perspective. A better under-
standing of a simulation’s architecture can help to iden-
tify and avoid design-breaking features which would oth-
erwise reduce the software’s portability and re-usability.
Visualisation is important in any simulation but plays dif-
ferent roles depending on the software goals.

It seems likely that a service-oriented approach to run-
ning simulations may become more prevalent but there
will likely also remain a strong need for advanced custom
crafted simulations as a tool for investigating state of the
art complex systems.

The future holds some promise for the development of
new tools and programming languages. One new system
of note may be the Fortress combined language and envi-
ronment [73]. Whatever tools are developed, there will be
a continued need for close integration of simulation and
rendering technologies that will further support portable,
fast and ubiquitous simulations in computational science.

References
[1] Hawick, K., Wallace, D.: High performance computing for

numerical applications. Technical Report EPCC-TR93-
09, Edinburgh Parallel Computing Centre (1993) Keynote
address, Proc. ACME Conference on Computational Me-
chanics, Swansea.

[2] Casti, J.L.: Would-Be Worlds: How Simulation is
Changing the Frontiers of Science. Wiley (1996) ISBN-
0471123080.

[3] Fox, G.C., Williams, R.D., Messina, P.C.: Parallel Com-
puting Works! Morgan Kaufmann Publishers, Inc. (1994)
ISBN 1-55860-253-4.

[4] Smarr, L., Catlett, C.E.: Metacomputing. Communica-
tions of the ACM 35 (1992) 44–52

[5] Hawick, K.: Computational science. Technical report,
Massey University (2003) CSTN-000.

[6] James, H.A., Hawick, K.A.: Scientific data management
in a grid environment. Journal of Grid Computing (2005)
1572–9814 ISSN: 1570-7873 (Paper) 1572-9814 (Online).

[7] Booth, S., Hawick, K.: Random Number generators for
Super Computers. Technical Report ECSP-TN, Edinburgh

Parallel Computing Centre, Edinburgh University, May-
field Road, EH9 3JZ, UK (1991)

[8] Knuth, D.: The Art of Computer Programming: Seminu-
merical Algorithms. 3rd edn. Volume 2. Addison-Wesley
(1997)

[9] C.F.Baillie, R.Gupta, K.A.Hawick, G.S.Pawley: Monte-
Carlo Renormalisation Group Ising Calculations.
Phys.Rev.B 45 (1992) 10438–10453

[10] Gould, H., Tobochnik, J., Christian, W.: An Introduc-
tion to Computer Simulation Methods. 3rd edn. Addison-
Wesley (2006) ISBN: 0-8053-7758-1.

[11] Allen, M., Tildesley, D.: Computer simulation of liquids.
Clarendon Press (1987)

[12] Newton, I.: Philosophiae Naturalis Principia Mathematica.
apud Sa. Smith, London (1687)

[13] Hawick, K.A.: Domain Growth in Alloys. PhD thesis,
Edinburgh University (1991)

[14] Bryson, T., Russell, K.: Java Binding for OpenGL (JOGL)
(2007)

[15] T.A.Witten, L.M.Sander: Diffusion Limited Aggregation,
a Kinetic critical Phenomenon. Phys.Rev.Lett. 47 (1981)
1400–1403

[16] Gardner, M.: Mathematical games: The fantastic combi-
nations of john conway’s new solitaire game ”life”. Scien-
tific American 223 (1970) 120123

[17] Potts, R.B.: Some generalised order-disorder transforma-
tions. Proc. Roy. Soc (1951) 106–109 received July.

[18] Binney, J.J., Dowrick, N.J., Fisher, A.J., Newman, M.E.J.:
The Theory of Critical Phenomena. Oxford University
Press (1992)

[19] Lowry, M.C., Ashenden, P.J., A..Hawick, K.: A testbed
system for time warp in java. Technical Report DHPC-
087, University of Adelaide (2000)

[20] Barry, R.C., Chorley, R.J.: Atmosphere, weather and cli-
mate. 5 edn. Routledge (1989)

[21] Hawick, K.A., Bell, R.S., Dickinson, A., Surry, P.D.,
Wylie, B.J.N.: Parallelisation of the unified model data as-
similation scheme. In: Proc. Workshop of Fifth ECMWF
Workshop on Use of Parallel Processors in Meteorology,
Reading, European Centre for Medium Range Weather
Forecasting (ECMWF) (1992)

[22] W.E.Fitzgibbon, Wheeler, M.F., eds.: Computational
methods in geosciences. SIAM (1992)

[23] Gonnella, G., Lamura, A., Sofonea, V.: Lattic boltzmann
simulation of thermal nonideal fluids. Phys. Rev. E 76
(2007) 036703

[24] Allen, M.P.: Simulations Using Hard Particles. Royal So-
ciety of London Philosophical Transactions Series A 344
(1993) 323–337

[25] Sarman, S., Evans, D.J.: Heat flow and mass diffusion
in binary lennard-jones mixtures. Phys.Rev.A 45 (1992)
2370–2379

[26] Donev, A., Torquato, S., Stillinger, F.H.: Neighbor list
collision-driven molecular dynamics simulation for non-
spherical hard particles: I. algorithmic details. J. Comput.
Phys. 202 (2005) 737–764

17



[27] Playne, D.P.: Notes on particle simulation and visualisa-
tion. Hons. thesis, Computer Science, Massey University
(2008)

[28] Ray, T.: An approach to the synthesis of life. Artificial Life
II, Santa Fe Institute Studies in the Sciences of Complexity
xi (1991) 371–408

[29] Adami, C.: On modeling life. In Brooks, R., Maes, P.,
eds.: Proc. Artificial Life IV, MIT Press (1994) 269–274

[30] Hawick, K.A., James, H.A., Scogings, C.J.: A zoology
of emergent patterns in a predator-prey simulation model.
In Nyongesa, H., ed.: Proceedings of the Sixth IASTED
International Conference on Modelling, Simulation, and
Optimization, Gabarone, Botswana (2006) 84–89

[31] Hawick, K.A., Scogings, C.J., James, H.A.: Defensive
spiral emergence in a predator-prey model. Complexity
International (2008) 1–10

[32] Hawick, K.A., James, H.A., Scogings, C.J.: Grid-
boxing for spatial simulation performance optimisation. In
T.Znati, ed.: Proc. 39th Annual Simulation Symposium,
Huntsville, Alabama, USA (2006) The Society for Mod-
eling and Simulation International, Pub. IEEE Computer
Society.

[33] James, H.A., Scogings, C.J., Hawick, K.A.: Parallel syn-
chronization issues in simulating artifical life. In Gonzalez,
T., ed.: Proc. 16th IASTED Int. Conf. on Parallel and Dis-
tributed Computing and Systems (PDCS), Cambidge, MA,
USA (2004) 815–820

[34] Hawick, K.A., James, H.A., Scogings, C.J.: Manual and
semi-automated classification in a microscopic artificial
life model. In: Proc. Int. Conf. on Computational Intel-
ligence (CI’05), Calgary, Canada. (2005) 135–140

[35] Hawick, K., Scogings, C.J.: Resource scarcity effects on
spatial species distribution in animat agent models. Tech
Note CSTN-059, Computer Science, Massey University
(2008)

[36] Hawick, K.A., James, H.A.: Simulating a computational
grid with networked animat agents. In R.Buyya, T.Ma,
eds.: Proc. Fourth Australasian Symposium on Grid Com-
puting and e-Research (AusGrid 2006). CSTN-028, Ho-
bart, Australia (2006) 63–70 ACSW Frontiers 2006, ISBN
1-920-68236-8, ISSN 1445-1336.

[37] Erdös, P., Rényi, A.: On random graphs. Publicationes
Mathematicae 6 (1959) 290–297

[38] Hawick, K.A., James, H.A.: A taxonomic review of graph
models and small-world networks. Technical Report Com-
putational Science Technical Report CSTN-003, Massey
University (2004)

[39] Newman, M.E.J.: The structure and function of complex
networks. SIAM Review 45 (2003) 169

[40] Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-
world’ networks. Nature 393 (1998) 440–442

[41] Milgram, S.: The small world problem. Psychology Today
1967 (1967) 60–67

[42] Newman, M.E.J.: The structure of scientific collaboration
networks. PNAS 98 (2001) 404–409

[43] Liljeros, F., Edling, C., Amaral, L., Stanley, H., Aberg,
Y.: The web of human sexual contacts. Nature 411 (2001)
907–908

[44] Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabsi,
A.L.: The large-scale organization of metabolic networks.
Nature 407 (2000) 651–654

[45] Fell, D.A., Wagner, A.: The small world of metabolism.
Nature Biotechnology 18 (2000) 1121–1122

[46] Wagner, A., Fell, D.A.: The small world inside large
metabolic networks. Proceedings of the Royal Society B
268 (2001) 1803–1810

[47] Hawick, K.: Cartan - a program for interactive model
fitting, error analysis and visualisation. Technical Report
CSTN-062, Computer Science, Massey University (2008)

[48] Watts, D.J.: Small worlds: the dynamics of networks be-
tween order and randomness. Princeton University Press
(1999)

[49] Ubiety Lab: UbiGraph - a tool for visualising
dynamic graphs. http://www.ubietylab.net/
ubigraph/ (2008) Last accessed August 2008.

[50] Hawick, K.: Interactive graph algorithm visualization and
the graviz prototype. Technical Report CSTN-061, Com-
puter Science, Massey University (2008)

[51] yWorks: yed - java graph editor. (2008)

[52] Smith, B.V.: Xfig Drawing Program for the X Windows
System. (1996)

[53] Thalmann, D., Hery, C., Lippman, S., Ono, H., Regelous,
S., Sutton, D.: Crowd and group animation. In: SIG-
GRAPH ’04: ACM SIGGRAPH 2004 Course Notes, New
York, NY, USA, ACM (2004) 34

[54] Ahearn, L.: 3D Game Art f/x & Design. Coriolis, Scotts-
dale, Arizona (2001) ISBN: 1-58880-100-4.

[55] Junker, G.: Pro OGRE 3D Programming. APress (2006)
ISBN 1590597109.

[56] Duchaineau, M., Wolinsky, M., Sigeti, D.E., Miller, M.C.,
Aldrich, C., Mineev-Weinstein, M.B.: Roaming terrain:
Real-time optimally adapting meshes. Technical Report
UCRL-JC-127870, LLNL (1997)

[57] Guido van Rossum: Python essays.
www.python.org/doc/essays (2008)

[58] Thomas, D., Fowler, C., Hunt, A.: Programming Ruby:
The Pragmatic Programmer’s Guide. 3rd edn. Pragmatic
Programmers (2004) ISBN 978-0-9745140-5-5.

[59] Demmel, J., Dongarra, J., DuCroz, J., GreenBaum, A.,
Hammarling, S., Sorensen, D.: A project for developing
a linear algebra library for high-performance computers.
ANL-MCS-P37-1288 Preprint (1988)

[60] Bischof, C.H., Dongarra, J.J.: A linear algebra library for
high-performance computers. In Carey, G.F., ed.: Parallel
Supercomputing: Methods, Algorithms and Applications.
Wiley (1989) 45–55

[61] Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery,
B.P.: Numerical Recipes in C. 2nd edn. Cambridge Uni-
versity Press (1992) ISBN 0-521-43108-5.

18



[62] Choi, J., Dongarra, J.J., Pozo, R., Walker, D.W.: Scala-
pack: A scalable linear algebra library for distributed
memory concurrent computers. In: Proc. of the Fourth
Symp. the Frontiers of Massively Parallel Computation,
IEEE Computer Society Press (1992) 120–127

[63] Woo, M., Neider, J., Davis, T., Shreiner, D.: OpenGL
Programming Guide: The Official Guide to Learn-
ing OpenGL. 3rd edition edn. Addison-Wesley (1999)
ISBN:0201604582.

[64] Sowizral, H., Rushforth, K., Deering, M.: The Java 3D
API Specification. 2nd edn. Sun Microsystems (2000)
ISBN 978-0201710410.

[65] Persistence of Vision Pty. Ltd.: Persistence of vision (tm)
raytracer. Williamstown, Victoria, Australia. (2004)

[66] Hoy, M., Wood, D., Loy, M., Elliot, J., Eckstein,
R.: Java Swing. O’Reilly and Associates (2002)
ISBN:0596004087.

[67] Welch, B., Jones, K., Hobbs, J.: Practical Programming in
Tcl and Tk. 4th edition edn. Prentice Hall (2003) ISBN-13:
978-0130385604.

[68] Williams, T., Kelley, C., Lang, R., Kotz, D., Campbell, J.,
Elber, G., Woo, A.: Gnuplot command-driven interactive
function plotting program. (2008)

[69] Heller, D.: XView programming manual: an open look
toolkit for X11. O’Reilly and Associates (1990) ISBN:0-
937175-38-2.

[70] Peck, A.: Beginning GIMP: From Novice to Professional.
Apress (2006) ISBN 1-59059-587-4.

[71] Henderson, B., Poskanzer, J.: Netpbm - networked
portable bit map image formats and tools. (2008)

[72] Blue Ribbon Panel on Simulation-Based Engineering Sci-
ence: Revolutionizing engineering science through sim-
ulation. Technical report, National Science Foundation
(2006)

[73] Allen, E., Chase, D., Flood, C., Luchangco, V., Maessen,
J.W., Ryu, S., Jr., G.L.S.: Project fortress - a multicore
language for multicore processors. Linux Magazine (2007)
38–43

19


