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Abstract 

Homoclinic orbits to bifocus-type stationary points have been studied theoretically by a number of authors, but up until 
now, only one analytic example has been found. In this paper we summarise and extend the known theory regarding bifocal 
homoclinic bifurcations and present numerical verification of some of the more interesting theoretical predictions that have 
been made. 
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1. Introduction 

Homoclinic bifurcations have been studied by many authors during the past 30 years or so, e.g. [ 13,14,17], and 

it has become apparent that they can be thought of  as "organising centres" for the dynamics of  low-dimensional, 

deterministic dynamical systems. Much effort has gone into classifying the different sorts of  bifurcation that can 

occur in terms of  their genericity or typicality, and determining the sorts of  behaviour that occur in systems that 

undergo these bifurcations. 
Assuming that a vector field is generic, there are (up to time reversal) three possible types of  homoclinic bifurcation 

involving hyperbolic stationary points: to a saddle, to a saddle-focus, and to a bifocus. The first two cases have 

been theoretically and numerically studied by a number of  people and are well understood, whilst the last case has 

been studied theoretically but not numerically. This paper presents a numerical investigation of  bifocal homoclinic 

bifurcations and verifies some of  the theoretical predictions that have been made. 
The rest of  this paper is organised as follows: the remainder of  this section introduces the idea of  a homoclinic 

orbit and briefly summarises the known results for the saddle and saddle-focus case. Section 2 is a presentation 

of  the known theoretical results for the bifocal case, with an emphasis on aspects that differ from the two cases 
mentioned above. Results are presented in the context of  both codimension one and codimension two homoclinic 
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bifurcations. Section 3 is a short description of the technique used to construct a vector field that undergoes a bifocal 

homoclinic bifurcation. This has been presented elsewhere [ 11,12] and is thus brief. Section 4 presents numerical 

verification of some of the theoretically derived results presented in Section 2, while Section 5 is a summary that 

also gives some conjectures and ideas for further work. 
A homoclinic orbit for an autonomous ordinary differential equation 

Jc = f ( x , /Z ) ,  f : ~n  X ~ ~ ~n  (1) 

is a non-trivial solution Xh (t) of (1) that tends to a stationary point, ~, in both forwards and backwards time, i.e. 

lim Xh( t )  ----- fi,, xh(O)  5~ x .  
t --~ ± oo 

For typical vector fields the existence of a homoclinic orbit is non-generic and we expect there to be an isolated 
value of/z,  which from now on we assume to be 0, at which the homoclinic orbit exists. We are normally interested 

in the possible dynamics of  the vector field for small values of  I/zl. 
Assuming that the homoclinic orbit does not pass too close to other stationary points in the flow, the local dynamics 

can be determined solely from the eigenvalues of  the Jacobian of the vector field evaluated at the stationary point, 
Df(£c, 0) (henceforth called A). Typically, trajectories which approach the stationary point as t ~ oo do so tangential 

to the eigenspace spanned by the eigenvector(s) of  A corresponding to the eigenvalue(s) whose real part is negative 

and smallest in absolute value (which we refer to as the negative leading eigenvalue(s)), and those that approach 
the stationary point as t --+ - c ~  do so tangential to the eigenspace spanned by the eigenvector(s) corresponding to 
the eigenvalue(s) whose real part is positive and smallest in numerical value (which we similarly call the positive 

leading eigenvalue(s)). Because of this behaviour in phase space, the values and signs of  all non-leading eigenvalues 

are irrelevant to the dynamics for small I/zl in typical systems. 

We assume that A has no eigenvalues with zero real part, and that none of the real parts of the leading eigenvalues 
are repeated (apart from those of complex conjugate pairs, which necessarily are), both generic assumptions. Given 
this, there are (up to time reversal) three possible cases: 
1. The leading eigenvalues of A are real, viz. {k, v}, where ~. < 0 < u. This is known as the saddle case. 

2. The leading eigenvalues are one real and one complex conjugate pair, viz. {~. + iogl, v}, where ~. < 0 < v and 
o~! > 0. This is:known as a saddle-focus. 

3. The leading eigenvalues are two complex conjugate pairs, viz. {~. -4- i~ol, u 4- iw2}, where )~ < 0 < v and 

• o~l, to2 > 0. This is known as a bifocus. 
Note that the dimension of phase space (the n in Eq. (1)) must be greater than 1 for case 1 to occur, greater than 2 
for case 2, and greater than 3 for case 3. 

For case 1 (the saddle), under the generic assumption that )~ + v 5~ 0, a periodic orbit is either created or destroyed 
as/z  passes through 0. A s #  tends to zero from the appropriate side, the periodic orbit tends to the homoclinic orbit 
and the period of the orbit tends to infinity. 

For case 2 (the saddle-focus) the dynamics for I/xl small depends on whether the ratio Ik/vl is greater than or 
less than 1. If this ratio (henceforth known as 8) is greater than 1, the dynamics is essentially the same as case 1: a 
periodic orbit is created or destroyed as/Z passes through 0 and the period of the orbit tends to infinity as /z  tends 
toO. 

If, however, ~ < 1, the differential equation has chaotic solutions for arbitrarily small values of  I/Zl, and there are 
an infinite number of  saddle-node bifurcations of periodic orbits and period-doubling bifurcations in any/z-interval 
containing the origin. There are also an infinite number of /z-values  accumulating on 0 from one side at which 
there are "double-pulse" homoclinic orbits that make two large excursions away from the stationary point before 
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Fig. 1. Top: a schematic sketch of period versus # for the saddle-focus case showing some of the infinite number of saddle-node 
and period-doubling bifurcations that accumulate on # = 0. Bottom: A schematic sketch of a "double-pulse" homoclinic orbit to a 
saddle-focus. 

approaching it. These last two concepts are illustrated schematically in Fig. 1. (Note the stabilty of  the periodic 

orbit in the top sketch - there are period-doubling bifurcations on every second "wiggle".)  

It can be shown that the asymptotic (as period ~ ~ )  difference in period between successive crossings of  the 

/z = 0 line in Fig. 1 (top) is zr/wl,  while the ratio of  successive values of  # at which saddle-node bifurcations of  

periodic orbits occur is - e x p  ( - r rV /Wl ) ,  where the initial minus sign is due to the oscillation of  the curve about 

/ z = 0 .  

These results have been derived by a number of  authors; see for example [9,13,15]. 

2. Theory of bifocal homoclinic bifurcations 

The existence of  countably many periodic orbits when/z  = 0, n = 4 and there is a homoclinic orbit to a bifocus 

was proved by Shi l 'n ikov [14] in 1967, and this result was extended by him in 1970 to show that when /z  = 0 

there is an uncountable number of  aperiodic orbits in either the saddle-focus or bifocus case [ 15]. Bifurcations that 

occur when a homoclinic orbit to a bifocus is perturbed were analysed in a theoretical sense in [8]. Two papers that 

investigate double-pulse bifocal homoclinic orbits are Refs. [ l ,  10], while Refs. [ 1 l,  12] show numerical evidence 

for the existence of  bifocal homoclinic orbits in specific examples. Section 2.1 is a summary of  codimension one 

phenomena derived in [ 1,8,10], and is not intended as a presentation of  new results, while Section 2.2, regarding 

codimension two behaviour, does contain some new results. 
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2.1. Codimension one phenomena 

As mentioned above, it was shown by Shil 'nikov [15] that if # ---- 0, there is chaotic behaviour in an arbitrarily 

small neighbourhood in phase space of  a bifocal homoclinic orbit. Fowler and Sparrow [8] showed that a plot of 

period versus/~ has the same shape as that shown at the top of Fig. 1 (though the position of  period-doubling 

bifurcations and the stability of  the orbits could not be determined) and also derived some scaling results for the 

shape of  the curve. As in the saddle-focus case, we will define a parameter 8 as 3 - I~./vl, where ~. and v are as in 

case 3 of  Section 1. The asymptotic difference in period between successive crossings of  t he / ,  = 0 line depends 

on whether 3 is greater or less than 1. If  3 > 1, the spacing is 7r/w2, whereas if 6 < 1, it is 7r/o91. The asymptotic 

ratio of successive values o f / z  at which there are saddle-node bifurcations of  periodic orbits also depends on the 

magnitude o f&  If~ > 1, the ratio is - exp ( - v J r / a ~ ) ,  whereas if~ < 1, it is - exp O.zr/wl). 

This change in scaling reflects the symmetry between the 6 < 1 and 6 > 1 cases, which can be transformed from 

one to the other by time reversal. 

It was shown in [ 1,10] that double-pulse homoclinic orbits can exist near a bifocal stationary point, but in contrast 

with the saddle-focus case (assuming a certain non-resonance condition on wl and w2), the values of # at which they 

occur accumulate on tz = 0 from both sides, with the exact form of  the accumulation depending on the ratio wl/w2. 

If  the resonance condition Wl/W2 = 2n for some n ~ 2v+ holds, the values of /z  at which there are double-pulse 

homoclinic orbits accumulate on 0 from one side only. 

Recall that a periodic orbit in ~n has associated with it n - 1 non-trivial Floquet multipliers, and that the product of 

these must be positive. One consequence of  this is that if a periodic orbit in R 3 undergoes a saddle-node bifurcation 

(multiplier passing through + 1) and then a period-doubling bifurcation (multiplier passing through - 1 ) ,  it must 

undergo reverse period-doubling before undergoing another saddle-node bifurcation. This is precisely what happens 

on every second branch in Fig. 1 (top). However, this no longer holds in R 4 and it is quite plausible that a periodic 

orbit in R4 involved in a homoclinic bifurcation to a bifocus undergoes a period-doubling bifurcation and then a 

number of  intervening saddle-node bifurcations before reverse period-doubling, as conjectured in [8] and illustrated 
in Fig. 22 of  that paper. 

2.2. Codimension two phenomena 

In a generic dissipative system, a homoclinic bifurcation is a codimension one phenomenon; if some other 

non-generic condition also holds, the bifurcation is of  codimension two. A number of  bifurcations of  this type are 

catalogued in [6]. We will introduce three more involving bifocal homoclinic bifurcations and mention two from [6]. 

Apart from the bifurcation parameter tz, the behaviour near a bifurcation to a bifocus depends largely on two 

other parameters, viz. the ratios 8 and wl/w2. The three possible codimension two bifurcations occur when, as well 
as having a homoclinic bifurcation, 

1. 3 = 1 while wl/0)2 is bounded away from both 0 and o~, or 
2. wl/092 = 0 while 6 < 1, or 

3. wl/o.r2 = 0 while ~ > 1. 

In the last two cases; the Jacobian at the stationary point has a repeated real eigenvalue of  ~. Unfoldings of  this 

will produce either a complex conjugate pair, so that the stationary point is a bifocus, or a pair of  unequal real 
eigenvalues, so that it is a saddle-focus. 

It may be helpful to look forward to Fig. 2. In this, E controls the unfolding of  the repeated eigenvalue mentioned 

above. When E > 0, the stationary point is a bifocus, while for E < 0, it is a saddle-focus. Thus, the three cases 
above correspond to moving along paths 1, 2 and 3, respectively, in this figure. The transition that occurs along 
path 4 is mentioned in [6], and has been studied by Belyakov [4] and Bernoff [5]. Since the stationary point is not 
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Fig. 2. Four possible paths in (E, 8) space along which codimension two bifurcations occur. 

a bifocus at any point along this path, we will not mention it further. Paths 2 and 3 are discussed below, while path 

1 is mentioned in the conclusion. 

2.2.1. Path  2 

Along path 2, we expect there to be an infinite number of  saddle-node and period-doubling bifurcations accu- 

mulating on # = 0 for E both positive and negative, i.e. there to be no qualitative change in this aspect as we pass 

through the codimension two point in (/~, ~) space. 

The only significant change is due to the behaviour of  the double-pulse homoclinic orbits. I f  E < 0, parameter 

values at which these occur accumulate on 0 from one side only, whereas if E > 0, they can accumulate from both 

sides. Given this, we might expect to see curves in (#, E) space on which there are bifocal homoclinic orbits move 

from one side of /z  = 0 to the other as E is increased through zero. 

2.2.2. Path 3 

Along path 3 we expect a significant change as we move through the codimension two point, since if E < 0 

there are no saddle-node bifurcations of  periodic orbits, whereas if e > 0 there is an infinite number accumulating 

on # = 0. Belyakov [3] studied a similar problem (the transition from a saddle to a saddle-focus) and derived an 

equation for the asymptotic shape of  the curves of  saddle-node bifurcations of  periodic orbits that emanate from 

(/z, e) = (0, 0) for ~ > 0. An essentially equivalent result can be derived for the saddle-focus to bifocus transition. 

Below, we outline both Belyakov's result and the result for the saddle-focus to bifocus transition. 

2.3. B e l y a k o v ' s  resul t  

Assume that the linearisation of  the flow about the stationary point is 

i" = ~r, 0 = w l ,  ~ = vz ,  

where X < 0 < v and tol > 0, and that there is a homoclinic connection to the stationary point a t /z  = 0. By 

considering the flow near the stationary point and using the global reinjection, we obtain an approximate map from 

a return plane to itself. This map is two-dimensional, but by assuming that we are close to the homoclinic orbit 
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in both phase and parameter space, we can approximate the problem of finding periodic orbits in the flow by the 

problem of finding solutions of the equation 

z - tz ~ flz~ cos [ ~ - ( l o g h  - logz)  + dp2] , (2) 

where/3 (> 0), h and 4~2 are constants relating to the exact geometry of the flow and 3 = 14 / v l (see for example [ 13] 

for a derivation of this result). 

Each root of  this equation approximately corresponds to a periodic orbit in the flow, the approximation getting 

better as the homoclinic orbit is approached. 

In the following, we assume that 3 and v are fixed, impose the condition that there is a saddle-node bifurcation 

of  periodic orbits in the flow, and then find the shape of  the curve in (#, o91 ) space on which this occurs. There are 

an infinite number of  these curves, which we label with n in the obvious way (n 6 7/); curves corresponding to 

successive values of  n lie on opposite sides of /z  = 0. 

For [#l small enough, the condition for a saddle-node bifurcation to occur is approximately 

dz 

where this derivative is evaluated at a solution of  (2). Eq. (3) is equivalent to 

I) 
-;~.cos [-~J-(logh - logz)  + 4~2] + w, sin [-~-(logh - logz)  + ~z] - /3z~_, . (4) 

Since ~ < 1 and we are interested in the limit z ~ 0, we replace the right-hand side of (4) with zero, resulting in 

the equation 

tan (log h - log z) + q~2 ~ - -  (5) 
O)1 

We also know that solutions of (2) are created and destroyed near the extrema of  the right-hand side of  (2), and we 

approximate this by saying that appropriate values of z at which to evaluate (3) are roots of  the equation 

z - # ~ +/3z ~. (6) 

Again, since ~ < 1 and we are interested in the limit z ~ 0, roots of  this are approximately 

z+ ~ . (7) 

Substituting these values of  z into (5) gives 

tan log h + ~ log + ~b2 ~ - -  (8) 
0)1 

and for this to hold as wl --+ 0, we need (wl/~.) log (~:#//3) + ep2 to tend to (n + ½)7r for some n ~ 7/in this limit. 
This rearranges to 

/zn ~ ( - 1 ) n B  exp ( -k , , /Wl) ,  (9) 

where kn = - ~ [ ( n  + ½)zr - q~2] and B is a constant. (Note that for (9) to make sense, n must be greater than some 
positive no.) This is the appropriate curve of  saddle-node bifurcations of  periodic orbits in (/z, Wl) space, and holds 
in the limit (/z, wl) -+ (0, 0). Note also that although the values of  kn depend on the problem-specific quantity q~2, 
Ik, - kn+ll = ~.zr, a quantity we assumed to be constant in our derivation. 
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2.4. The saddle- focus to bifocus transition 

In a similar way to the above, assume that the linearisation of the flow about the stationary point is 

rl = )~rl, O1 : o91, t: 2 : vr2,  02 : o)2, 

where ~. < 0 < v and wl, 092 > 0, and that there is a homoclinic connection when # ---- 0. Then the following map 

for successive values of  r2, derived as Eq. (4.2) in [8], gives approximate behaviour of  orbits in the flow: 

r~ +1 cos (--~-~ log (k /r~  +1 ) + 052) - /3 ( r~)  's cos ( - - ~  log ( k / r i g ) +  q51) = It. (10) 

The quantities/~, k, 051 and 052 a r e  constants which depend on the exact geometry of  the flow. Recall that g = I)~/vl > 
1. Fixed points of  (10) approximately correspond to periodic orbits in the flow. Since 3 > 1 and/~ is of  order 1, and 

we are interested in the r2 --+ 0 limit, the second term on the left-hand side of (10) can be neglected relative to the 

first one, i.e. to lowest order, the equation we are interested in is 

r cos ( - ~ ,  2 log(k/r)+052) ~" /.t, (11) 

where we have dropped the sub- and superscripts on r. The assumption that there is a saddle-node bifurcation in 

the flow is approximately equivalent to either 

l o g ( k / r ) + 0 5 2  = 2 n l r  i f # > O  
r = , a  

o r  

• ] 
- W 2 1 o g ( k / r ) + 0 5 2  : (2n + 1)7r i f #  < 0. 

I) r = - - / /  

Rearranging these leads to 

~ n  ~ ( - - 1 )  n k  exp ( - - b n / w 2 ) ,  (12) 

where bn :- v(052 - nTr)  and k is a constant. (In a similar way to above, n must be less than some negative no.) 

Compare this with Eq. (9). Although (9) and (12) are of  the same form, there is an important difference - Eq. (9) 

was derived under the assumption that Wl --> 0, and is only valid in this limit, while the derivation of (12) did 

not assume the limit 09 2 ~ 0. The fact that Eqs. (9) and (12) are so similar is perhaps not surprising, because (as 

mentioned in [8]) Eq. (10) is close to Eq. (2) when g is far from one. In a similar way to the saddle to saddle-focus 

transition, Ibn - bn+ l l = :r v in Eq. (12). 

3. Construction of examples 

This section is a short presentation of  the technique used to construct a vector field that has a bifocal homoclinic 

orbit. It has been described elsewhere in more detail [ 11,12]. The basic idea is to take a three-dimensional vector 

field which has a homoclinic orbit to a saddle-focus and augment the phase space by one dimension in such a way 

that the homoclinic connection is preserved and that the stationary point changes from a saddle-focus to a bifocus. 

Assume we have a system 

X = = A X  + f ( X ,  # )  (13) 
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(where X e ~ 3 , f  : ~3 x R ~-~ ~3 contains only nonlinear terms, # is a scalar bifurcation parameter and A is a 

3 x 3 matrix with eigenvalues ~. -4- iwl, v, where ~. < 0 < v) which has a homoclinic orbit to the origin at # = 0. 

Then the augmented system 

= A X  + f ( X ,  Ix) - we3, fv = E(e~. X ) / D 3  -t- v w  (14) 

(where e3, e~ are, respectively, the eigenvector and adjoint eigenvector of  A corresponding to v, D3 = e~ • e3 

and w e R) has eigenvalues at the origin of  ~. 4- io)l and u 4- v/-2-7. Since homoclinic orbits are a codimension 

one phenomenon, we expect there to be a curve with E small and positive and IIxl small along which (14) has a 

homoclinic orbit to the origin, which is necessarily a bifocus. It may be useful to refer again to Fig. 2, where the 

connection between s and the o92 of  Section 2.2 is now more clear, i.e. o92 = ~ when ~ > 0. 

This technique was implemented in [ 1 1,12] and numerical evidence for the existence of  bifocal homoclinic orbits 

was shown there. 

4. Numerical verification of theory 

The numerical results in the remainder of  this paper were obtained from a system constructed as in Section 3. 
The system used as (13) is one studied by Arntodo et al. [2]: 

= y ,  y = Z, ~ = - - X  2 a t- OtX - -  y y  - Z, (15) 

where ot and y are scalar parameters. Arntodo et al. set y to various values in order to fix the value of  8 at 

homoclinicity, and used oe as the bifurcation parameter. For 0.4 < y < 3, there is a unique positive value of  ot at 

which there is a homoclinic connection to the origin, which is a saddle-focus. The value of  8 at the origin decreases 

through 1 as t '  is increased through t'l "~ 1.3. 

There are two slightly different ways to augment this system, depending on exactly which features one is interested 
in, and these are outlined below. 

4.1. P a t h 2  

In this section, we simply calculate the eigenvalues and eigenvectors of  the Jacobian of  (15) at the origin and 
write down the equivalent of  (14): 

= y - w ,  

= - x  2 + otx - y y  -- z -- v2w,  (16) 

[o tvx  + (ot-- , v ) y  + vZz]  

= ,  ; i  T_ ¥ + 

where v is the positive real root of  s 3 + s 2 + y s  - a = 0. If  we set y to 2, the value of  8 at homoclinicity is greater 

than 1 for IEI small, and we can verify the expected behaviour along path 2. As mentioned in Section 2.2.1, we 
might expect to see the curves on which there are bifocal homoclinic orbits change from one side of  Oth to the other 
as E is increased through zero (Oth being the value of  or in Eq. (16) at which there is a homoclinic bifurcation). This 
has indeed been observed, and some results are shown in Figs. 3 and 4. 

(All numerical results in this paper were obtained using the software package AUTO [7]. The curves of"homoclinic 

bifurcations" shown in the figures were obtained by computing the locus of  periodic orbits with very high period. 
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~ . 1 4  , l l l , , I l 
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Fig. 4. The relative position of one curve of double-pulse homoclinic bifurcations and the curve of primary homoclinic bifurcations for 
Eq. (16). The horizontal axis is ~ and the vertical is the difference between the a-value for the curve and a h. 

We cou ld  have  per formed  numer ica l  exper iments  as in [12]  to provide  more  c o n v i n c i n g  p r o o f  o f  the e x i s t e n c e  o f  

h o m o c l i n i c  orbits,  but have taken the results  from A U T O  as suff ic ient . )  

4.2. Path 3 

In this sec t ion  w e  w i s h  to ver i fy  the theoret ical  results  f rom S e c t i o n  2.2.2. To do this  w e  require all the parameters  

o f  the u n a u g m e n t e d  s y s t e m  to be  constant ,  so that w e  can vary e and/z and verify Eq. (12). 
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Fig. 5. The positions of three successive curves of saddle-node bifurcations of periodic orbits relative to the curve of primary homoclinic 
bifurcations for Eq. (17). The horizontal axis is E and the vertical is the difference in/z-values between the saddle-node curves and the 
homoclinic curve. 

If y = 0.5 in (15), there is a principle homoclinic bifurcation to the origin when ot ,~ 0.9641494, and in this case, 

the eigenvalues of  the Jacobian evaluated at the origin are approximately -0 .815373 4-0.929383 i and 0.630745854, 

and the eigenvector and adjoint eigenvector corresponding to the real eigenvalue are approximately 

0 .801639004)  

0.505630478 

0.318924328 

and 

0.624255617 ) 

0.6659763565 , 

0.40838758217 

respectively. Using these vectors to augment (15) when (c~, y)  ---- (0.9641494, 0.5) and introducing a bifurcation 

parameter/z results in the system: 

.~ = y - 0.801639004w, 

.)) = z - / z x  2 - 0.505630478w, 

= 0.9641494x - x 2 - 0.5y - z - 0.318924328w, 

[0.624255617x + O.6659763565y + O.40838758217z ] 
tb = ~ 0.9674103297 + 0.630745854w. 

(17) 

Note that while these coefficients have been calculated only approximately, it was exactly Eq. (17) that was numer- 
ically studied. 

As explained in Section 2.2.2, we expect to see curves of  saddle-node bifurcations of  periodic orbits emanating 
from (/z, ~) = (0, 0) along path 3 and for them to have a shape given by (12). Three such (successive) curves 

for (17) are shown in Fig. 5, and a plot of  log I/Zsn - #hi versus 1/Vff for these data is shown in Fig. 6. Although 
these curves are among the first few, and hence not expected to agree particularly well with asymptotic results, the 
average difference in slopes of  successive curves is close to the expected value of  0.630745853Jr ~ 2. 
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Fig. 6. The data points shows log [/Zsn - / Z h l  versus ~:-1/2 for the data in Fig. 5. 

4.3. Belyakov's scaling 

This section is a numerical verification of the result derived by Belyakov [3] and described in Section 2.2 for 

the shape of the curves of saddle-node bifurcations of  periodic orbits in the transition from a homoclinic orbit to a 
saddle-focus to a homoclinic orbit to a saddle. The system we study is the following 

k = y - z ,  

.9 = 2.657466x + 2.328733y + x 2 + xy + #x 2 + 0.83893461Z, (18) 

[ 2.657466x - -  0.83893461 y ] 
~. = E L 3.361277 J - 0.83893461z. 

This system was derived by augmenting a truncated unfolding of the normal form of the Takens-Bogdanov bifur- 

cation 

Jr=y,  } , = 2 c x + ( l + c ) y + x 2 + x y ,  (19) 

which is numerically observed to have a homoclinic connection to the origin at c ~ 1.328733, in a way similar to that 

explained in Section 3. When c = 1.328733, the Jacobian of (19) has eigenvalues of approximately 3.1676676 and 

-0 .83893461,  and the eigenvector and adjoint eigenvector associated with the negative eigenvalue are approximately 

( , ( 2.657466 
- 0 . 8 3 8 9 3 4 6 1 )  and \ -0 .83893461 ) ' 

respectively. Hence the augmented system (18). When e = z = 0, the system (18) restricted to the (x, y)-plane 
has a homoclinic connection to the origin at # = 0. The eigenvalues of  the Jacobian of the full three-dimensional 
system evaluated at the origin are 3.1676676, -0 .83893461 4- ix/g, when e > 0; i.e. the o91 of Eq. (9) is x/~. 

Four curves of  saddle-node bifurcations of  periodic orbits relative to the curve of homoclinic bifurcations for this 
augmented system are shown in Fig. 7. A plot of log [/Zsn - / z h [  as a function of 1/,,/~ for these curves is shown 
in Fig. 8. The average of the difference in slopes of  successive curves is 2.67, in good agreement with the expected 

value (from Section 2) of[  - 0.83893461rr [ ~ 2.64. 
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bifurcation as a function of E for system (18). 
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Fig. 8. A plot of log I/Zsn - #hi v e r s u s  E - 1 / 2  for the data shown in Fig. 7. 

4.4. Codimension one phenonema 

The possibil i ty of  a periodic orbit involved in a bifocal homoclinic orbit undergoing period-doubling and then 

a number of  saddle-node bifurcations before reverse period-doubling was conjectured in [8] and mentioned in 

Section 2.1. This behaviour has been observed in (16) for y = 0.5 and is illustrated in Fig. 9 - a plot of  period and 

half-period (for the doubled orbit) versus ot when ¢ = 0.22346. 
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Fig. 9. A plot of period T (of the basic orbit) and half-period ½ T (of the period-doubled orbit) versus et for Eq. (l 6), showing the 
bifurcation sequence "period-doubling, saddle-node, reverse period-doubling". The value of ~ is 0.22346, and F is 0.5. 

5. Conclusion and comments  

We did not dicuss path 1 of  Fig. 2 in this paper. The bifurcations that occur along here are expected to be of  interest 

because when ~ = 1, the sum of  the eigenvalues of  the Jacobian is zero and the flow is then locally "conservative" 

in some sense. There are expected to be some similarities with the I)~/vl = 0.5 case for the saddle-focus, as the flow 

in this case is also "divergence-free" at the stationary point. This last case is mentioned in [6], but does not seem to 

have been studied yet. 

One other avenue open for investigation is the application of the technique discussed in Section 3 to systems 

which possess some symmetries.  One example would be the Lorenz system, studied in [16], about which much is 

already known. It would then be possible to investigate (for example) heteroclinic orbits between two symmetric 

bifocal stationary points or symmetric pairs of  orbits homoclinic to bifocal stationary points. 

In this paper, we presented the known theoretical results regarding bifocal homoclinic bifurcations in the context 

of  both codimension one and codimension two bifurcations, compared them with results for the saddle and saddle- 

focus case, and presented a new result regarding the transition from a saddle-focus homoclinic orbit to a bifocus 

homoclinic orbit. We then showed results from a numerical investigation of  some of  the more interesting aspects of 

the theory. There was good agreement between theory and numerical results. 
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