
Technical Report CSTN-077

Benchmarking GPU Devices with N-Body Simulations

D.P. Playne, M.G.B. Johnson and K.A. Hawick
Computer Science, Institute for Information and Mathematical Sciences,

Massey University, North Shore 102-904, Auckland, New Zealand
d.p.playne@massey.ac.nz, mitchelljohnson@ihug.co.nz, k.a.hawick@massey.ac.nz

Tel: +64 9 414 0800 Fax: +64 9 441 8181

Abstract

Recent developments in processing devices such as graph-
ical processing units and multi-core systems offer opportu-
nities to make use of parallel techniques at the chip level
to obtain high performance. We discuss the difficulties in
establishing suitable benchmark codes for making compar-
isons across these device architectures and in a way that is
representative of key applications. We report on our use of
classical dynamical particle collision simulation codes as
benchmarks for comparing modern GPUs. We discuss our
findings in terms of architectural features for parallelism as
well as clock speed issues.

Keywords: benchmarking and measurements; multi-
thread; multi-core; performance analysis.

1 Introduction

Benchmarking architectures at the chip level in a manner
to give indications of high level application performance is
a non-trivial problem. Low level benchmarks concerning
raw memory access times or speeds of individual floating
point operations are easy to quantify but can give mislead-
ing estimates on the overall performance of an algorithm as
it might appear in a high level application such as a modern
game, animation or simulation.

Devices such as Graphical Processing Units (GPUs) and
multi-core CPUs are becoming very widely available and
are often an important component for delivering high per-
formance on a gaming or simulation platform. We have
used a number of GPUs for accelerating various scientific
simulations [1] that are representative of some of the al-

gorithms and ideas in physics and gaming engines [2, 3].
With the recent development of General-Purpose computa-
tion on GPU (GPGPU) technologies [5–10], a large number
of scientific simulations are being implemented to utilise
the cheap computational power of GPUs.

While many benchmarks exist for GPUs, they often focus
on either graphical rendering or the individual capabilities
of the graphics card. A GPGPU benchmark that evaluates
a GPUs performance for scientific simulations is required.
The N-body particle model was chosen as a benchmark as
it represents the requirements of many simulations. This is
an N2 problem that requires memory access patterns that
are representative of many simulations.

In a scientific simulation, these interactions might involve
hard-body mechanisms or soft-force models based on an
empirically fitted potential energy model such as Lennard-
Jones [4]. Particle models find use in games for modelling
sand and other physically based particles but also for ap-
proximating water flow or even for providing a substrate
model for moving cloth and other materials. Other uses
of rigid body models include providing an approximating
skeleton for the limbs of animated figures and other objects
in a game.

In this paper we describe some benchmarking issues in Sec-
tion: 2. We review issues associated with classical dynam-
ical particle algorithms in Section: 3, their implementation
in Section: 4 and report on some specific benchmarking
data obtained using these ideas on various CPUs and GPUs
in Section: 5. In Section: 6 we discuss how a fair compar-
ison can be made across these quite different devices, and
explore the implications for some of the architecture fea-
tures involved. We offer some ideas for further device level
benchmarks and concluding remarks in Section: 7.

2 Benchmarking Processing Devices

Relatively recent developments in new processing devices
include the move to 64-bit architectures, the incorporation
of multiple cores onto CPUs and the introduction of spe-
cialist devices such as GPUs for specific processing tasks.
The move to 64-bit architectures has had implications for
games and simulations [14] in terms of floating point per-
formance but has perhaps had more impact on applications
complexity in terms of data storage and addressing. For the
most part, 64-bit issues can be taken care of by the compiler
and by appropriate changes in operating system level code.

Multi-core issues however continue to challenge applica-
tions programmers [15] and typically require the use of spe-
cific parallel programming models such as multi-threading
or of application languages with in-built parallel constructs
such as High Performance Fortran [16]. Assessing or
benchmarking the performance of applications on parallel
systems in a fair manner across widely differing systems
has proved a notoriously hard problem to solve. The NAS
parallel Benchmarks [17] provided a partial solution to this
problem by abstracting low level details away and specify-
ing a relatively high level algorithm and problem specifica-
tion rather than just providing a specific low level code im-
plementation that vendors and other benchmarkers would
have to optimise.

3 N-Body Particle Algorithms

Particle simulations involve computing the motion of a
number of particles (defined by a position, velocity, mass
and possibly a shape). These particles move according to
Newton’s Laws of Motion [23] and often attract/repluse
each other according to a potential function. As is common
for particle simulations, the potential function used for this
simulation is Newton’s Law of Universal Gravitation [23].
As defined by:

F =
Gm1m2

r2
(1)

The total force on each particle can be calculated from the
total sum of each of the forces the other particles impart
on it. A particle simulation must calculate the total force
on each particle and then apply a suitable numerical in-
tegration method to calculate the change in velocity and
position of each particle over a discrete time-step. These
particle simulations can be utilised for many purposes, but
as a benchmark simply performing the calculations is suf-
ficient. However, there are several algorithms available for

calculating the total force on each particle. Figure: 1 shows
a screen shot of an example particle simulation.

Figure 1: A screenshot of an example particle simulation.

All-Pairs Method The All-Pairs method is the simplest
algorithm for calculating the total force on each particle.
The force on every particle (as defined by the potential
function of the simulation) from each other particle is cal-
culated one interaction at a time and the final forces are
used to calculate the change in velocity and position of the
particle. This is an O(N2) algorithm as for N particles,
the total acceleration on each particle requires N calcula-
tions. This method is simple to implement but is limited
by the exponential computational complexity of the algo-
rithm. There are approximation methods for reducing this
complexity from O(N2) to O(N log N).

Barnes-Hut Treecode One common method for per-
forming N-body force calculations in O(N log N) time is
the Barnes-Hut tree method [24–26]. This method is based
on the work by Andrew Appel [27] and is more commonly
used due to its greater performance [25]. The method ap-
proximates the interactions of the system to allow them to
be calculated faster at the cost of a controllable loss of pre-
cision.

The interaction between a single particle and a cluster of
distant particles can be approximated by a single interac-
tion calculation. The combined force a cluster exerts on the
single particle can be calculated by averaging the positions
and summing the weights of the particles and then perform-
ing a single potential calculation. This method works well

and the approximation is accurate enough to work when the
distance between the particle and the cluster is large.

Barnes and Hut use Octrees to define clusters and calculate
an approximation to a controllable degree of error. Octrees
are built by subdividing a three dimensional cube into eight
smaller cubes, this structure is defined as a tree (each node
has eight children thus the name octree). When building
a octree for a particle simulation, each node in the tree (a
cube of space) is divided into eight smaller nodes until each
node is either empty or contains one particle. See Figure: 2
for an example Octree.

Figure 2: A visualisation of an Octree, only nodes contain-
ing a particle are rendered.

The method Barnes and Hut suggest for constructing this
tree is via an insertion method which allows the construc-
tion of a tree with a time complexity of O(N log N) [24].
Once the space of the simulation has been subdivided, each
node is recursively assigned a mass and centre-of-mass ac-
cording to the either real particle it contains or the particles
within its sub-nodes.

The algorithm moves recursively down the tree and if the
length of the current node l over the distance D to the cur-
rent particle is less than θ (l

D < θ) then the potentials of
the particles within the current node can be approximated
by a single calculation. In this way the θ value can be used
to control the degree of error the algorithm has. This al-
gorithm has been shown to simulate the motion of parti-
cle with a reasonable degree of error with a computational
complex of O(N log N) [24, 25].

Barnes-Hut as a Benchmark While the Barnes-Hut
treecode method is a very effective method for reducing the
computational complexity of the N-body problem, it does

not provide a useful benchmark. Because the algorithm re-
duces calculations by approximating clusters to particle in-
teractions as a single calculation, the number of acceptable
approximations depends on the positions of the particles.
Thus the time-taken will depend on the random starting
configuration of the particles. This makes the performance
results of the simulation circumstantial and dependent on
the seed and random number generator used. Many exe-
cutions with multiple configurations must be used to over-
come this problem; however, for a benchmark this will take
a long time and be unnecessary.

There are other O(N log N) N-body algorithms available,
most notably the fast multipole method (FMM) [28]. How-
ever, these other methods use similar approximation meth-
ods and suffer from the same issues as the Barnes-Hut
method. The All-Pairs algorithm, although computation-
ally more complex and less often used, provided a more
stable and meaningful benchmark. The All-Pairs algorithm
will perform the same number of potential calculations re-
gardless of the starting configuration of the particles.

4 Benchmark Implementation in
CUDA

The GPGPU library chosen for implementing this bench-
mark is NVidia’s CUDA [6]. At the time of publish-
ing, CUDA represents the most complete and easy-to-use
GPGPU library. The use of CUDA restricts this benchmark
to comparing NVidia graphics cards only, the idea of im-
plementing two benchmarks (one for NVidia one for ATI)
was considered but quickly dismissed as the results from
the benchmark would be skewed due to the use of differ-
ent libraries. There may be the potential for a multi-vendor
benchmark in the future with the intended releases of li-
braries such as OpenCL [10] however such libraries are cur-
rently in the inception stage. Although CUDA is restricted
to NVidia cards, it represents the most suitable library for
the purpose of this research.

The benchmark itself will consist of an N-body parti-
cle simulation implementing the All-Pairs algorithm with
CUDA. To test the performance of the GPU, the simulation
will be executed with several system sizes over many time
steps. The number of time-steps for each system size will
be set such that the time for the benchmark will be several
minutes, this is to avoid issues with timing accuracy. The
accuracy of the timing will not be increased, the error will
simply be insignificant compared to the total time taken for
the benchmark.

4.1 Kernel Allocation

To implement this simulation in CUDA, the program must
be decomposed into many threads. GPU architectures are
best suited to executing large numbers of threads which
CUDA organises into blocks (each block can contain a
maximum of 512 threads). CUDA executes each block of
threads on one multiprocessor at a time and is capable of
scheduling large numbers of blocks (the blocks are organ-
ised into a grid). The most simple method for allocating
threads is to assign one thread to each particle.

In this implementation, each thread is responsible for cal-
culating the total force on its allocated particle. This re-
quires each kernel to access the data from every other par-
ticle to perform these calculations. It is relatively easy to
implement this algorithm in CUDA; however, to achieve
the best performance the program should make use of the
optimised memory made available by CUDA. To design a
program that utilises the optimisation available on GPU ar-
chitectures and thus truly test the performance of the GPU,
one must understand the types of memory available.

4.2 CUDA Memory

There are many types of memory available for use in a
CUDA program, choosing the memory most suited to the
task is critical for the performance of the program [13].
The types of memory and the specifics of their usage is de-
scribed in detail in the CUDA programming guide [6] and
in review articles such as [13]. We present only a brief de-
scription of the memory types used for input, output and
caching within kernels. It is important that this benchmark
makes use of these or else the benchmark will measure
the performance of GPUs for simulations that ignore the
performance-critical optimisations available.

Global Memory is the main GPU memory with the
largest size but also slowest access time. A typical Global
memory access takes 200-400 ms [6]. CUDA can improve
the time required for multiple global memory transactions
using a process known as a coalescing. When a half-warp
(see the CUDA Programming Guide [6]) of threads (16 se-
quential threads) access 16 sequential addresses in global
memory, CUDA can combine them into one single transac-
tion.

Shared Memory is visible only at the block level.
Threads in the same block and read and write to this mem-
ory to share data. This type of memory is much faster than
global memory but cannot be used to store the values of the

field as it cannot be accessed by the host code. However, it
can be used to effectively share data to reduce the number
of global memory transactions required.

Texture Memory is a memory cache rather than a sepa-
rate piece of memory. When a value is read from texture
memory, the cache will first be checked to determine if the
value is already in the cache. If it is not then the texture
cache will be reloaded with the value and the values spa-
tially surrounding it from global memory. Texture memory
is optimised to cache values in a two-dimensional spatiality,
although CUDA does support three-dimensional textures.
Texture memory can greatly increase the performance of a
program if the threads in each block access values within
the spatial size of the texture cache.

Constant Memory is another cache similar to the texture
cache. Instead of caching several values in a spatial locality,
it is designed for reading constants from memory when all
threads in a block read the same value. If a value is stored
in the constant cache, all the threads in a half-warp can read
from it simultaneously.

Correctly using these memory types can provide a signif-
icant speed increase and will test the performance of the
GPU when operating in conditions similar to common sim-
ulations. To utilise these memory types, the benchmark
makes use of a tile calculation method as described in Fast
N-Body Simulation with CUDA [29].

Tile Calculation Tile calculation makes use of shared
memory to increase the performance of the simulation. The
threads are allocated into blocks of p particles with a total
of N/p blocks. Each block will process one tile of N/p
particles at a time using shared memory to reduce global
memory transactions. Each thread calculates the force on
its particle by performing the following algorithm:

1. Load one particle’s data into shared memory.

2. Synchronise with the other threads in the block.

3. Calculate the force each of the particles stored in
shared memory exerts on the thread’s particle.

4. Sychronise with the other threads in the block.

5. Repeat 1-4 until all particles have been processed.

6. From the force on the particle, calculate the total
change in position and velocity.

7. Write the results back to the output memory.

This the basic algorithm presented by Nyland Et. Al.
in ”Fast N-Body Simulation with CUDA” [29] and the
code for the benchmark has been adapted from their code.
One important modification made for this benchmark is
the change of integration method. The original integra-
tion method used is the leapfrog-Verlet method. While
this method is useful, most modern scientific simulations
require a higher-order, more stable integration methods
to produce meaningful results. The benchmarking ver-
sion makes use of the Runge-Kutta 2nd order integration
method. Listing: 1 is an code snippet from the benchmark
that show how the benchmark performs this tile calculation.

Listing 1: Pseudo code that performs the tile calculation N-
body. Adapted from the code presented by Nyland Et. Al.
in [29]. Note that gravity(float3 acc, float4 p1, float4 p2) is
a function that calculates the total acceleration on p2 from
p1 and adds it onto acc.

d e f i n e WRAP(x ,m) (((x)<m) ? (x) : (x−m))
d e f i n e SX(i) s h a r e d P o s [i]

g l o b a l void i n t e g r a t e B o d i e s (f l o a t 4 ∗ newPos ,
f l o a t 4 ∗ newVel , f l o a t 4 ∗ oldPos , f l o a t 4 ∗ oldVel ,
f l o a t 4 ∗ oldPos2 , f l o a t 4 ∗ oldVel2 , f l o a t de l t aT ime ,
i n t N, bool s e c o n d S t e p) {

i n t i n d e x = b l o c k I d x . x ∗ blockDim . x + t h r e a d I d x . x ;
f l o a t 4 pos = o ldP os [i n d e x] ;

f l o a t 3 a c c e l = {0 .0 f , 0 . 0 f , 0 . 0 f } ;

/ / Go t h r o u g h a l l t i l e s
f o r (i n t i = 0 ; i < N/ blockDim . x ; i ++) {

/ / Load one p a r t i c l e ’ s da ta i n t o s h a r e memory
s h a r e d P o s [t h r e a d I d x . x] = o l dPo s [

WRAP(b l o c k I d x . x+ i , gr idDim . x) ∗ blockDim . x +
t h r e a d I d x . x] ;

/ / s y n c h r o n i s e
s y n c t h r e a d s () ;

/ / C a l c u l a t e t o t a l a c c e l e r a t i o n from t h e
/ / p a r t i c l e s i n sh ar ed memory
f o r (unsigned i n t n =0; n<blockDim . x ;) {

a c c e l = g r a v i t y (a c c e l , SX(n ++) , pos) ;
a c c e l = g r a v i t y (a c c e l , SX(n ++) , pos) ;
a c c e l = g r a v i t y (a c c e l , SX(n ++) , pos) ;
a c c e l = g r a v i t y (a c c e l , SX(n ++) , pos) ;

}
/ / s y n c h r o n i s e

s y n c t h r e a d s () ;
}

f l o a t 4 v e l = o ld Ve l [i n d e x] ;

i f (s e c o n d S t e p != t rue) {
/ / Take f i r s t RK2 h a l f s t e p

pos . x += v e l . x ∗ d e l t a T i m e ∗ 0 . 5 ;
pos . y += v e l . y ∗ d e l t a T i m e ∗ 0 . 5 ;
pos . z += v e l . z ∗ d e l t a T i m e ∗ 0 . 5 ;

v e l . x = v e l . x + a c c e l . x ∗ d e l t a T i m e ∗ 0 . 5 ;
v e l . y = v e l . y + a c c e l . y ∗ d e l t a T i m e ∗ 0 . 5 ;
v e l . z = v e l . z + a c c e l . z ∗ d e l t a T i m e ∗ 0 . 5 ;

/ / s t o r e new p o s i t i o n and v e l o c i t y
newPos [i n d e x] = pos ;
newVel [i n d e x] = v e l ;

} e l s e {
/ / Take second RK2 f u l l s t e p
f l o a t 4 pos2 = o ldPos2 [i n d e x] ;

f l o a t 4 v e l 2 = o ldVe l2 [i n d e x] ;

pos . x = pos2 . x + v e l . x ∗ d e l t a T i m e ;
pos . y = pos2 . y + v e l . y ∗ d e l t a T i m e ;
pos . z = pos2 . z + v e l . z ∗ d e l t a T i m e ;

v e l . x = v e l 2 . x + a c c e l . x ∗ d e l t a T i m e ;
v e l . y = v e l 2 . y + a c c e l . y ∗ d e l t a T i m e ;
v e l . z = v e l 2 . z + a c c e l . z ∗ d e l t a T i m e ;

/ / s t o r e new p o s i t i o n and v e l o c i t y
newPos [i n d e x] = pos ;
newVel [i n d e x] = v e l ;

}
}

5 Results

The benchmark is set to simulate 1000 time-steps for sys-
tem sizes of N = [1024, 2048, 4096, 8192], 500 time-steps
for N=16,384 and 250 time-steps for N=32,768. The time
taken to complete the simulation for each size is recorded
and combined together to give a benchmark score. This
benchmark will calculate two benchmark scores, the first is
the sum of the number of interactions calculated over the
time taken to complete the simulations and the second is
this first score corrected by the clock speed (C) and num-
ber of processors (P) of the GPUs. The second score is
intended to represent how efficient the GPU is with its re-
sources. The calculation of these scores can be seen in the
following equations:

score =

32768X
N=1024

N2

t(N)
(2)

efficiency =
1

P
× 500

C
×

32768X
N=1024

N2

t(N)
(3)

To test the appropriateness of this benchmark, it has been
executed on several GPU architectures to test how well
they perform for use as scientific simulations. GPUs from
the three generations of CUDA-enabled GPUs have been
tested, this is to ensure that the benchmark is applicable
to the all recent generations of NVidia GPUs. Included in
the list of GPUs are the GeForce 9600M GT and 9400M
mobile graphics cards. The score for each GPU along with
their total cores and can be seen in Table: 1 which compares
the GPUs benchmarked and their final scores.

Because the individual time for the system size is calcu-
lated with this benchmark, they can be represented graphi-
cally (see Figure: 3). These results are only measured up to
a system size of 32,768. Unfortunately system sizes larger
than this caused issues with operating system display driver

Table 1: A table of GPUs tested and their final benchmark
and efficiency scores.

GPU Total Stream Benchmark Efficiency
Processors Score Score

GTX260+ 216 7373 25.6
9600M GT 32 1867 58.3

9400GT 16 1245 70.7
9400M 16 970 67.4

8800GTS 96 4637 48.3

time-outs. While this can be overcome by invoking the pro-
gram multiple times to compute the interactions of only a
part of the system at a time, it would provide no more useful
information. However, a system size of N=32,768 is suffi-
cient for the purpose of this benchmark and still provides a
useful performance measure.

Figure 3: A comparison of the time taken by the GPUs
to complete the simulation for system sizes of N = [1024,
2048, 4096, 8192, 16384, 32768].

6 Discussion

Interestingly, yet perhaps not unexpectedly, the higher end
graphics cards that provide the best overall performance
also make the least efficient use of their resources. It is ex-
pected that a GPU with more cores will be less efficient as
it has must perform more resource management than a card
with fewer cores, however the GTX260+ had under half the
efficiency of the GeForce 8000 and 9000 series GPUs.

Interestingly it was the oldest generation graphics card
tested (the 8800 GTS) had the best mix of performance and
efficiency. While clearly slower in terms of absolute per-
formance compared to the GTX260+, the 8800 GTS had
efficiency values comparable to the GeForce 9000 series
cards and was almost twice as efficient as the GTX260+.

7 Summary and Conclusions

The benchmark implemented has shown that a N-body sim-
ulation is applicable for evaluating the performance of vari-
ous GPUs with respect to scientific simulations. The results
from the GPUs benchmarked using this system provided a
comparison in terms of absolute performance as well as ef-
ficiency which showed the latest generation graphics cards
to be the fastest overall yet also the most inefficient.

The current benchmark implementation utilised NVidia’s
CUDA API and is thus limited to NVidia graphics cards.
We are optimistic about the planned release of libraries
such as OpenCL [10] which would allow the benchmark to
be extended to compare not only NVidia and ATI graphics
cards but also any multi-core architecture.

We believe that the holistic approach of formulating
applications-oriented benchmark scores based upon kernel
algorithms may be generally applicable and useful when
comparing very different device architectures.

References

[1] Playne, D.P., Gerdelan, A.P., Leist, A., Scogings, C.J.,
Hawick, K.A.: Simulation modelling and visualisa-
tion: Toolkits for building artificial worlds. Research
Letters in the Information and Mathematical Sciences
12 (2008) 25–50

[2] Eberly, D.H., Shoemake, K.: Game Physics. Number
ISBN 978-1558607408. Morgan Kaufmann (2003)

[3] Eberly, D.H.: 3D Game Engine Design: A Practical
Approach to Real-Time Computer Graphics. Number
ISBN: 978-0122290633. Morgan Kaufmann (2006)

[4] Lennard-Jones, J.: Cohesion. Proc. Royal Soc. 43
(1931) 461–482

[5] Fatahalian, K., Houston, M.: A Closer Look at GPUs.
Communications of the ACM 51 (2008) 50–57

[6] NVIDIA R© Corporation: CUDATM 2.0 Programming
Guide. (2008) Last accessed November 2008.

[7] Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian,
K., Houston, M., Hanrahan, P.: Brook for GPUs:
stream computing on graphics hardware. ACM Trans.
Graph. 23 (2004) 777–786

[8] AMD: ATI CTM Guide. (2006)

[9] McCool, M., Toit, S.D.: Metaprogramming GPUs
with Sh. A K Peters, Ltd. (2004)

[10] Khronos Group: OpenCL (2008)

[11] Tomov, S., McGuigan, M., Bennett, R., Smith, G.,
Spiletic, J.: Benchmarking and implementation
of probability-based simulations on programmable
graphics cards. Computers & Graphics 29 (2005) 71
– 80

[12] Perumalla, K.S., Aaby, B.G.: Data parallel execution
challenges and runtime performance of agent simula-
tions on gpus. In: SpringSim ’08: Proceedings of the
2008 Spring simulation multiconference, New York,
NY, USA, ACM (2008) 116–123

[13] Leist, A., Playne, D., Hawick, K.: Exploiting Graph-
ical Processing Units for Data-Parallel Scientific Ap-
plications. Technical Report CSTN-065, Massey Uni-
versity (2008)

[14] Hawick, K.A., James, H.A., Scogings, C.J.: 64-bit
architectures and compute clusters for high perfor-
mance simulations. Technical report, Information and
Mathematical Sciences, Massey University, Albany,
North Shore 102-904, Auckland, New Zealand (2006)

[15] Hill, M., Marty, M.: Amdahl’s law in the multicore
era. Computer 41 (2008) 33–38

[16] Yau, H.W., Fox, G.C., Hawick, K.A.: Evaluation of
High Performance Fortran through applications ker-
nels. In: Proc. High Performance Computing and Net-
working 1997. (1997)

[17] Bailey, D., Barscz, E., Barton, J., Browning, D.,
Carter, R., Dagum, L., Fatoohi, R., Fineberg, S., Fred-
erickson, P., Lasinski, T., Schreiber, R., Simon, H.,
Venkatakrishnan, V., Weeratunga, S.: The nas par-
allel benchmarks. Technical Report RNR-94-007,
NASA Ames Research Center, Moffett Field, CA,
USA. (1994)

[18] Moore, S.K.: Multicore is bad news for supercomput-
ers. IEEE Spectrum 45 (2008) 11

[19] Oskin, M.: The revolution inside the box. Communi-
cations of the ACM 51 (2008) 70–78

[20] Sutter, H., Larus, J.: Software and the concurrency
revolution. Queue 3 (2005) 54–62

[21] Cantrill, B.: Hidden in plain sight. System Perfor-
mance 4 (2006) 26–36

[22] Grove, D.A., Coddington, P.D.: Communication
benchmarking and performance modelling of mpi
programs on cluster computers. J. Supercomput. 34
(2005) 201–217

[23] Newton, I.: Philosophiae Naturalis Principia Mathe-
matica. apud Sa. Smith, London (1687)

[24] Barnes, J., Hut, P.: A hierarchical o(n log n) force-
calculation algorithm. Nature 324 (1986) 446–449

[25] Warren, M.S., Salmon, J.K.: A parallel hashed oct-
tree n-body algorithm. In: Supercomputing. (1993)
12–21

[26] Anderson, R.: Tree data structures for n-body sim-
ulation. In: Foundations of Computer Science, 1996.
Proceedings., 37th Annual Symposium on. (14-16 Oct
1996) 224–233

[27] Appel, A.W.: An Investigation of Galaxy Cluster-
ing Using an Asymptotically Fast N-Body Algorithm.
PhD thesis, Princeton University (1981)

[28] Greengard, L., Rokhlin, V.: A fast algorithm for par-
ticle simulations. Journal of Computational Physics
135 (1997) 280–292

[29] Nyland, L., Harris, M., Prins, J.: Fast n-body simu-
lation with cuda. In Nguyen, H., ed.: GPU Gems 3.
Addison Wesley Professional (2007)

