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Abstract

Vector fields whose flow preserves a symplectic form up to a constant, such as simple mechanical
systems with friction, are called “conformal”. We develop a reduction theory for symmetric con-
formal Hamiltonian systems, analogous to symplectic reduction theory. This entire theory extends
naturally to Poisson systems: given a symmetric conformal Poisson vector field, we show that it
induces two reduced conformal Poisson vector fields, again analogous to the dual pair construction
for symplectic manifolds. Conformal Poisson systems form an interesting infinite-dimensional Lie
algebra of foliate vector fields. Manifolds supporting such conformal vector fields include cotan-
gent bundles, Lie–Poisson manifolds, and their natural quotients. © 2001 Elsevier Science B.V. All
rights reserved.

MSC: 53C57; 58705

Sub. Class.: Dynamical systems

Keywords: Hamiltonian systems; Conformal Poisson structure

1. Introduction

The fields of symplectic geometry and geometric mechanics are closely linked, indeed
almost synonymous [10,14]. One of their most important features is that the symplectic
diffeomorphisms on a manifold form a group. This property can be taken as the definition of
“geometry;” it is natural to try and generalize it. In 1913 Cartan [5,24] found that, subject to
certain restrictions, there are just six classes of groups of diffeomorphisms on any manifold,
namely (i) Diff itself; (ii) Diffω, the diffeomorphisms preserving a symplectic 2-formω; (iii)
Diffµ, the diffeomorphisms preserving a volume form µ; (iv) Diffα , the diffeomorphisms
preserving a contact form α up to a function; and the conformal groups, (v) Diffcω and (vi)
Diffcµ, the diffeomorphisms preserving the form ω or µ up to a constant. Classes (i)–(iv)

∗ Corresponding author.
E-mail addresses: r.mclachlan@massey.ac.nz (R. McLachlan), m.perlmutter@massey.ac.nz (M. Perlmutter).

0393-0440/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0393 -0440 (01 )00020 -1



R. McLachlan, M. Perlmutter / Journal of Geometry and Physics 39 (2001) 276–300 277

are widely studied in dynamical systems and for their group-theoretic properties [2]. The
conformal groups are much less studied yet form natural generalizations of Diffµ and Diffω.
Two references are [18], in which the quadratic conformal symplectic maps are classified,
and [6], in which the symmetry of the Lyapunov spectrum of conformal symplectic systems
is studied. It is frequently mentioned that the Lorenz system has constant divergence and
that its flow lies in Diffcµ, but this is not usually regarded as being very significant. In this
paper we explore some of the geometry and dynamics of the conformal symplectic group
Diffcω. (Some implications for the numerical solution of such systems were discussed in
[15].) 1

In the simplest case, namely when the manifold is R2n with coordinates (q, p) and ω =
dq ∧ dp, the conformal vector fields — those whose flow is conformal — have the form:

q̇ = ∂H

∂p
, ṗ = −∂H

∂q
+ cp, (1.1)

where H : R2n → R is the Hamiltonian. Their flow has the property ϕ∗ω = ectω, so the
symplectic inner product of any two tangent vectors contracts exponentially if c < 0. This
case includes simple mechanical systems with friction, such as the Duffing oscillator. If
H = T +V (q), T = 1

2p
tM(q)p, then Ḣ = cT ≤ 0 when c < 0 and M is positive definite.

Such systems dissipate energy and symplectic area. (In general, however, Ḣ is not sign
definite.) Only this very special type of friction is compatible with the symplectic structure
in the required way. In Section 2 we study conformal systems and their algebraic structure
on more general symplectic manifolds.

The term ‘dissipation’ can also refer to a decrease of energy [16], such as in systems with
Rayleigh dissipation, q̇ = Hp, ṗ = −Hq−R(q)Hp, for which Ḣ = −R(q)(Hp,Hp) ≤ 0.
(HereR(q) defines a positive metric.) Simple mechanical systems with Rayleigh dissipation
are conformal when R(q) = cM(q)−1. In general, however, Rayleigh dissipation does not
imply any special behavior of the symplectic form.

How is conformal dynamics different from any other kind? This really deserves a major
study of its own. One known property is that its eigenvalues at any point, and hence its
Lyapunov exponents, sum in pairs to c [6]. This controls the phase portraits near fixed
points and bounds the Lyapunov dimension of any attractors to ≤ n. However, the Lya-
punov spectrum is not invariant under homeomorphisms and one would expect that Diffcω,
having Diffω as a codimension-1 subgroup, would have similarly constrained dynamics.
Motivated by these questions, we consider the geometric structure of conformal systems
with symmetry, and how it differs from arbitrary symmetric systems on one hand, and from
symmetric Hamiltonian and Poisson systems on the other.

A Hamiltonian system with an appropriate symmetry has the momentum equation J̇ = 0.
In the conformal case, we derive in Proposition 7 the modified equation J̇ = cJ. That is,
the foliation defined by the level sets of the momentum map is still invariant, although each
leaf is no longer fixed.

1 Note that the term ‘conformal symplectic’ is also used in the literature [10,23] to refer to 2-forms which are
not closed but for which there is a function f such that d(f ω) = 0. This type of conformal symplectic dynamics
is a re-parameterization in time of an ordinary symplectic flow.
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In Section 3 we begin a more detailed reduction and reconstruction theory by studying
the case of a G-invariant system on T ∗G: many elements of the standard theory survive in
a modified form. Specifically, we find reduced vector fields on each leg of the associated
dual pair; left reduction leads to a “conformal Lie–Poisson system,” and right reduction
leads to the conformal momentum equation J̇ = cJ. (See also [3], in which a special
Rayleigh dissipation function also leads to a reduced dissipative system on the dual of the Lie
algebra of G; these reduced systems are not conformal but do actually preserve momentum,
J̇ = 0.)

Today, the Cartan classification is studied in terms of Lie pseudogroups, one of several
possible infinite-dimensional analogs of Lie groups [9,21]. They are said to be Lie because
they are defined as the solutions of PDEs, and pseudo because such solutions are in general
only local diffeomorphisms, so that composition is only defined when the domains and
ranges overlap (thus they are not true groups). A simple example is the (finite-dimensional)
Lie pseudogroup onR defined by ϕ′ϕ′′′− 3

2ϕ
′′2 = 0 with solution the local diffeomorphisms

ϕ : x 
→ (ax+ b)/(cx+ d). The restrictions to the Cartan classification mentioned above
are that it applies only to transitive (for all x, y ∈ M there exists ϕ ∈ G such that ϕ(x) =
y), primitive (there is no foliation of M which is left invariant by every element of G),
infinite-dimensional Lie pseudogroups G on complex manifolds M . In the 1960s gaps
were discovered in Cartan’s proof, which were corrected by Guillemin et al. [7,20]; the
classification was extended to the real case by Shnider [19]. There seems to have been little
progress in classifying the general case since then.

The main pseudogroups form the different “kinds of dynamics” that people study —
complex, volume preserving, symmetric, and so on — and despite the lack of a complete
classification, there is nothing to stop us looking for interesting non-primitive pseudogroups
as they arise in dynamics. A non-primitive pseudogroup leaves some foliation invariant. For
example, in the case of a trivial foliation, M = L×F where L is a leaf and F is the space of
leaves, the maps preserving the foliation have the form ϕ(x, y) = (f (x, y), g(y)) and are
known as “skew product” systems, introduced by Anzai [1], and studied today in ergodic
theory [4] and complex dynamics [8].

In our context, one immediate example of a non-primitive pseudogroup is a Poisson
manifold together with its automorphisms, the Poisson maps, which we study in Section 4.
The manifold is foliated into symplectic leaves and this foliation is preserved by the Poisson
maps. In the general case, the dimension of the leaves may vary from point to point and we
have a generalized foliation [10]. (In the case usually studied, each leaf is itself preserved,
as in the flows of Hamiltonian ODEs, but this is not necessary.) Poisson manifolds also
carry a natural conformal Lie pseudogroup, the maps that preserve the Poisson bracket up
to a function of the leaf (i.e., up to a Casimir). It has many subgroups, the most important
being that in which the function of the leaf is constant, which we call special conformal. In
this section we characterize conformal Poisson maps as leaf-to-leaf conformal symplectic
maps; we show that the Hamiltonian and the Poisson vector fields form ideals in the Lie
algebra of conformal Poisson vector fields; and we show that when the Poisson bracket
is homogeneous of degree not equal to 2 (e.g., in the Lie–Poisson case), the linear radial
vector field xi(∂/∂xi) is conformal.
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In Section 5 we study conformal Poisson systems with symmetry. We prove that just
as Hamiltonian systems with symmetry on symplectic manifolds reduce to Hamiltonian
systems on Poisson manifolds, conformal systems on symplectic manifolds reduce to special
conformal systems on Poisson manifolds. We also present a theory of reduction entirely in
the Poisson category.

In a sense, the conformal Poisson pseudogroup is one of the simplest non-primitive
pseudogroups, in that the foliation has no transverse structure and the induced maps on
the leaf spaces are locally unconstrained. We describe the pseudogroup to some extent
but several questions remain open, especially that of which Poisson manifolds support a
special conformal vector field. Our examples of those that do include exact symplectic
manifolds, constant and Lie–Poisson manifolds, Lie algebroids, and a quadratic bracket on
R

3; reduction by stages gives a more complicated example. In simple cases the vector field
which is radial and linear on suitable fibers (known as the Liouville vector field [10], q̇ = 0,
ṗ = p in the canonical case) is conformal.

2. Conformal vector fields on exact symplectic manifolds

LetM be a symplectic manifold with symplectic formω. IfM is exact we writeω = −dθ .
For a functionH onM we denote its Hamiltonian vector field byXH . We work in the smooth
(C∞) category throughout.

Definition 1. The vector field Xc is said to be conformal with parameter c ∈ R if

LXcω = cω. (2.1)

The diffeomorphism ϕc is conformal if

(ϕc)∗ω = cω. (2.2)

The diffeomorphisms ϕc form the pseudogroup Diffcω, one of Cartan’s six fundamental
classes of primitive pseudogroups.

Proposition 1.

1. The time-t flow of Xc is conformal with parameter ect.
2. (M,ω) admits a conformal vector field with parameter c �= 0 if and only if M is exact.
3. Given H ∈ C∞(M) and M exact, the vector field Xc

H defined by

iXc
H
ω = dH − cθ (2.3)

is conformal.
4. If, in addition, H 1(M) = 0, then given Xc there exists a function H such that Xc = Xc

H ,
and the set of conformal vector fields on M is given by

{XH + cZ : H ∈ C∞(M)}, (2.4)
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where Z is defined by

iZω = −θ. (2.5)

Proof.

1. Let ϕt denote the flow of Xc. By the Lie derivative theorem, we have (d/dt)ϕ∗t ω =
ϕ∗t LXcω = cϕ∗t ω which has the unique solution ϕ∗t ω = ectω.

2. Using the homotopy formula for Lie derivatives, we see that Xc is conformal on (M,ω)

if and only if diXcω = cω. Therefore, if c �= 0, we see that ω must be exact so that
ω = −dθ for some 1-form θ . Eq. (2.1) then reads

diXcω = −cdθ. (2.6)

3. LXc
H
ω = diXc

H
ω = −cdθ = cω, as required.

4. Notice that LZω = diZω = −dθ = ω. Furthermore, for any H ∈ C∞(M), we have
LXH

ω = 0 and so clearly Z+XH is conformal with parameter 1. Conversely, given Xc,
if H 1(M) = 0, from Eq. (2.6) there exists H such that iXcω = dH − cθ , from which
we conclude, by non-degeneracy of ω, that Xc = XH + cZ. �

Following [10] we shall call Z the Liouville vector field.

Proposition 2. The conformal vector fields on (M,−dθ) form a Lie algebra of vector fields
with the Hamiltonian vector fields as an ideal. If H 1(M) = 0, the quotient of the conformal
vector fields by the Hamiltonian vector fields is a one-dimensional subspace parameterized
by the constants c.

Proof.

LXc iXh
ω = i[Xc,Xh]ω + iXh

LXcω = i[Xc,Xh]ω + ciXh
ω = i[Xc,Xh]ω + cdh

from which we conclude

i[Xc,Xh]ω = LXcdh− cdh = d(Xc(h)− ch).

Thus, [Xh,X
c] = X−(Xc(h)−ch). Finally, if H 1(M) = 0, we know that every conformal

vector field can be written as XH + cZ for some Hamiltonian and a unique c ∈ R, from
which the last statement follows. �

Next, we consider the effect of the flow of Xc on the canonical Poisson bracket.

Proposition 3. The vector field Xc is conformal if and only if for all f, g ∈ C∞(M),

Xc{f, g} = {Xcf, g} + {f,Xcg} − c{f, g}. (2.7)

The diffeomorphism ϕc is conformal if and only if

{f ◦ ϕc, g ◦ ϕc} = c{f, g} ◦ ϕc. (2.8)
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Proof. We compute

Xc{f, g} =LXc(ω(Xf ,Xg)) = LXc(iXg (iXf
ω))

= iLXc (Xg)(iXf
ω)+ iXg (iLXc (Xf )ω)+ iXg (iXf

(LXcω))

= i[Xc,Xg](iXf
ω)+ iXg (i[Xc,Xf ]ω)+ cω(Xf ,Xg).

Using [Xc,Xg] = XXc(g)−cg from the previous proposition, we can rewrite the first term
as ω(Xf ,XXc(g))− c{f, g} and similarly for the second term from which the proposition
is now immediate. �

In the case that M is a canonical cotangent bundle, the conformal vector field Z has a
particularly simple form. The following proposition shows how simple mechanical systems
with linear friction, Eq. (1.1), are conformal.

Proposition 4. Let (M,ω) = (T ∗Q,−dΘ). Then Z is tangent to the fibers of the cotangent
bundle and is linear and radial on the fibers; in local coordinates (q, p),

Z = p
∂

∂p
. (2.9)

Proof. On a linear space, the linear radial vector field is characterized as the unique vector
field which leaves all linear functions invariant. Any function linear on the fibers of T ∗Q
can be represented as

PX(αq) = 〈αq,X(q)〉
for some vector field X on Q. It suffices to check that Z(PX) = PX. We have

Z(PX) = dPX · Z = ω(XPX
,Z) = θ(XPX

) = PX,

where XPX
is the Hamiltonian vector field corresponding to the function PX. The third

equality follows from the definition of Z and the final equality holds since the flow of XPX

is the cotangent lift of the flow of X on Q. The expression Z = p(∂/∂p) now follows
directly or can be found by solving iZ(dq ∧ dp) = p dq. �

Proposition 5. Consider the time-dependent diffeomorphism ψt : T ∗Q→ T ∗Q given by

ψt(αq) = e−ctαq.

Then, Xc
H is the pull back by ψt of a time-dependent Hamiltonian vector field on T ∗Q. In

local coordinates (q, p) on T ∗Q the Hamiltonian is given by

H̃ (q̃, p̃) = e−ctH(q̃, ectp̃),

where (q̃, p̃) = ψt(q, p) = (q, e−ctp).

Proof. It suffices to work in local coordinates (q, p). Hamilton’s equations in (q̃, p̃) for H̃
are given by

˙̃q = ∂H̃

∂p̃
= ∂H

∂p
= q̇, ˙̃p = −∂H̃

∂q̃
= e−ct ∂H

∂q
.
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Now, since p̃ = e−ctp we also have

˙̃p = e−ct(ṗ − cp) = e−ct
(
−∂H

∂q

)

from which the claim follows. �

We now consider an action of a Lie group G on the exact symplectic manifold (M,−dθ)
leaving the 1-form θ invariant. It is well known that such an action admits an Ad∗-equivariant
momentum map. Suppose this action also leaves invariant the function H ∈ C∞(M). In the
case of Hamiltonian vector fields, we know that XH is tangent to the level surfaces of the
momentum map, J−1(µ). This is not the case for conformal vector fields associated to the
G-invariant function H . However, there is a simple momentum equation satisfied by such
systems which constrains the motion to a ray of momentum values defined by the initial
momentum.

Proposition 6. For any c, and any G-invariant function H ∈ C∞(M), Xc
H is a G-invariant

vector field.

Proof.

ϕ∗g(iXc
H
ω) = iϕ∗g(Xc

H )(ϕ
∗
gω) = iϕ∗g(Xc

H )ω.

On the other hand,

ϕ∗g(iXc
H
ω) = ϕ∗g(dH − cθ) = dH − cθ = iXc

H
ω,

so that iϕ∗gXc
H
ω = iXc

H
ω, from which, by non-degeneracy of ω, the proposition follows. �

Remark. Notice that on a cotangent bundle the conformal vector field Z (Eq. (2.9)) is
invariant with respect to any cotangent lifted diffeomorphism.

Proposition 7 (The conformal momentum equation). Let G be a Lie group acting on the
left of M, G×M → M , leaving the 1-form θ invariant. Let H be a G-invariant function on
M. We know that Xc

H is a G-invariant vector field. Moreover, we have for all ξ ∈ g,
dJ (ξ) ·Xc

H = cJ(ξ),

and so

T J ·Xc
H = cJ, (2.10)

where, as usual, J (ξ) = 〈J, ξ〉.

Proof. Since G leaves θ invariant, we have, for each ξ ∈ g,
LξM θ = 0 = iξM dθ + diξM θ,

where ξM is the infinitesimal generator for the action of G on M . This implies J (ξ) = iξM θ .
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Now, since Xc
H = XH + cZ, we have

dJ (ξ) · (XH + cZ) = −dH · ξM + ω(ξM, cZ) = −ciZω(ξM) = cθ(ξM) = cJ(ξ),

as required. �

Example 1 (Angular momentum). Consider M = T ∗(R3) with canonical symplectic form
dq∧dp. Since H 1(T ∗(R3)) = 0, any conformal vector field is of the form Xc

H = XH +cZ
for some function H . Suppose H is SO(3)-invariant for the cotangent lifted action of
SO(3) on T ∗R3, i.e. H = h( 1

2 |q|2, 1
2 |p|2, q · p). The momentum map for this action

is given by J(q, p) = q × p, the classical angular momentum. Then the equations of
motion are

q̇ = h2p + h3q, ṗ = −h1q − h3p + cp

so

d

dt
J = d

dt
(q × p) = q × ṗ + q̇ × p = cq× p = cJ,

as in Proposition 7.

In contrast to the Hamiltonian case, XH is not in general a symmetry of Xc
H and so there

is no ‘momentum’ equation for energy. Instead we have Ḣ = Z(H) �= 0 which can have,
in general, any sign.

In the case of a free group action, the momentum equation J̇ = cJ produces dim G

eigenvalues (and hence Lyapunov exponents) equal to c. Since eigenvalues sum in pairs to
c, there are also dim G eigenvalues equal to 0, just as in the symplectic case. An example
of this in the case of linear momentum can be seen in the computations in [6].

By analogy with the Hamiltonian case, we consider the dual pair [22]

(2.11)

and ask what can be said about reduction and reconstruction of the symmetric conformal
vector field Xc

H . The momentum equation (2.10) implies that Xc
H projects to a well-defined

vector field on g∗ under the derivative of the momentum map since T J · Xc
H is constant

along the fibers of J. Furthermore, we assume the momentum map is both surjective onto g∗

and submersive. Note that this is always the case for cotangent lifted actions. Thus, T J ·Xc
H

is a vector field on g∗. (In the Hamiltonian case, of course, this dropped vector field is zero.)
The left-hand side of the dual pair also inherits a vector field, since Xc

H is G-invariant. We
will see in Section 4 that this vector field, T π ·Xc

H , is also conformal relative to the reduced
Poisson structure on M/G, and that it is generated by the dropped function h ∈ C∞(M/G)

defined by H = h◦π . However, we first study in detail the “Lie–Poisson” case, M = T ∗G
with canonical symplectic form ω = −dΘ .
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3. Conformal Lie–Poisson reduction and reconstruction

We first establish some notation that will be used throughout this section. For any g ∈ G,
Lg and Rg will denote left and right translation on the group, respectively. We will use
concatenated notation for the corresponding left and right tangent and cotangent lifted
actions, G × TG → TG, TG × G → TG, G × T ∗G → T ∗G, and T ∗G × G → T ∗G,
respectively. Thus, for vh ∈ ThG, αh ∈ T ∗h G, and g ∈ G we have

g · vh := ThLg · vh, (3.1)

vh · g := ThRg · vh, (3.2)

g · αh := T ∗ghLg−1αh ∈ T ∗ghG, (3.3)

αh · g := T ∗ghRg−1αh ∈ T ∗hgG. (3.4)

We also let τ : T ∗G → G be the cotangent bundle projection, π : T ∗G → g∗ be the
quotient for the left cotangent lifted action, and πR : T ∗G → g∗ be the quotient for the
right cotangent lifted action. Thus π(αh) = h−1 · αh and similarly for πR .

We know that for a left G-invariant function H on T ∗G, the conformal vector field Xc
H

is left G-invariant and therefore drops to a vector field on

T ∗g/g � g∗.
It turns out that the dropped vector field is also conformal relative to the Lie–Poisson
structure on g∗ and is related to the standard Lie–Poisson Hamiltonian vector field in a
simple way. Recall that the Lie–Poisson bracket for the left quotient is given by

{f, g}(µ) = −
〈
µ,

[
δf

δµ
,
δg

δµ

]〉
, (3.5)

where (δf/δµ) is the unique element of g such that〈
ν,

δf

δµ

〉
= df (µ) · ν

holds for all ν ∈ g∗. The Hamiltonian vector field associated to the function h is then
X−h (µ) = ad∗δh/δµµ.

Theorem 1 (Conformal Lie–Poisson reduction). We have

T π ·Xc
H = Xc

h ◦ π,
where Xc

h is the vector field on g∗ given by

Xc
h(µ) = X−h (µ)+ cµ.

Proof. LetH andF be twoG-invariant functions on T ∗G. We letH = h◦π andF = f ◦π
define the functions h and f on g∗. First notice that the function dF ·Xc

H is G-invariant as
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well since dF is G-invariant, and from Proposition 6, we know that Xc
H is G-invariant. Fix

αg ∈ T ∗G and let µ = π(αg). We then have,

dF(αg) ·Xc
H (αg) = df (µ) · T π ·Xc

H (αg), (3.6)

so that we can read off the dropped vector field by computing the left-hand side. From the
definition of Xc

H we have,

dF ·Xc
H = dF · (XH + cZ) = {F,H } − ciZω(XF ) = {F,H } + cΘ(XF ). (3.7)

We can immediately express the first term in terms of the quotient functions using the
Lie–Poisson reduction theorem. We turn attention to the second term. Recall that XF is
a G-invariant vector field on T ∗G and is tangent to the level surfaces of the momentum
map. To compute

Θ(XF )(αg) = 〈αg, T τ · (XF (αg))〉, (3.8)

we use the following facts from the reconstruction theory for Lie–Poisson dynamics. The
integral curve of XF through αg is constructed by first computing the reduced trajectory

µ̇ = Xf (µ), µ(0) = µ,

which determines the curve in g given by ξ(t) = (δf/δµ)|µ=µ(t) and then solving the
time-dependent differential equation on G given by

ġ(t) = g(t) · ξ(t), g(0) = g.

The integral curve through αg is then given by g(t) · µ(t). We then have

Tαgτ (XF (αg)) = d

dt

∣∣∣∣
t=0

τ(g(t) · µ(t)) = d

dt

∣∣∣∣
t=0

g(t) = g · δf
δµ

,

so that, from Eq. (3.8), we have

Θ(XF )(αg) =
〈
αg, g · δf

δµ

〉
=

〈
g−1 · αg,

δf

δµ

〉
=

〈
µ,

δf

δµ

〉
.

Following Eqs. (3.6) and (3.7) we have

df (µ) · Tαgπ ·Xc
H (αg) = {F,H }(αg)+ cΘ(XF ) = df (µ) ·X−h (µ)+ df (µ) · cµ.

Since f ∈ C∞(g∗) is arbitrary, we conclude, again from Eq. (3.6), and from the definition
of Xc

h,

Tαgπ ·Xc
H (αg) = Xc

h ◦ π(αg) = X−h (µ)+ cµ. �

The reduced vector field is conformal in the following sense.

Proposition 8. Let {, } be the left Lie–Poisson bracket on g∗. For all f, g ∈ C∞(g∗), the
vector field Xc

h obtained through reduction satisfies

Xc
h{f, g} = {Xc

hf, g} + {f,Xc
hg} − c{f, g}. (3.9)
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Proof. Let Rc(µ) = cµ so that Xc
h(µ) = X−h (µ) + Rc(µ). Since X−h is Hamiltonian, it

suffices to check that

Rc{f, g}(µ) = {Rcf, g} + {f,Rcg} − c{f, g}. (3.10)

Now since the phase space g∗ is linear, it suffices to check Eq. (3.10) on linear functions.
For a linear function f note that we have f (µ) = df (µ) · µ so that

Rc(f )(µ) = df (µ) · cµ = cf(µ).

Furthermore the Lie–Poisson bracket of two linear functions f and g is again a linear
function corresponding to the bracket of the Lie algebra elements corresponding to f and
g. Thus Rc{f, g} = c{f, g} and therefore the left-hand side of Eq. (3.10) is c{f, g} while
the right-hand side is

{Rcf, g} + {f,Rcg} − c{f, g} = {cf, g} + {f, cg} − c{f, g} = c{f, g},
as required. �

We now reconstruct the solution to the conformal Hamiltonian system on T ∗G from the
reduced vector fields on the legs of the dual pair.

Theorem 2. Let H = h ◦ π be a left-invariant function on T ∗G and denote by Xc
H the

corresponding conformal vector field. Fix a point αg0 ∈ T ∗g0
G and denote by αg(t) the

integral curve of Xc
H through αg0 . Denote by ν0 ∈ g∗ the right translation of αg0 to the

identity, i.e. ν0 = αg0 ·g−1
0 . Let µ(t) be the solution to the conformal Lie–Poisson equation

µ̇ = Xc
h(µ), µ(0) = π(αg0). Then the reconstructed integral curve is given by

(ectν0) · g(t), (3.11)

where g(t) is a curve through g satisfying the differential equation on G given by

g(t)−1 · ġ(t) = δh

δµ

∣∣∣∣
µ=µ(t)

.

Proof. From the momentum equation (2.10) for conformal vector fields we know that

J(αg(t)) = πR(αg(t)) = αg(t) · g(t)−1 = ectν0.

Therefore αg(t) = ectν0 ·g(t). On the other hand, we know from Theorem 1 that the integral
curve for Xc

H projects onto the integral curve for Xc
h under the map π : T ∗G → g∗. We

can use this fact to derive a differential equation satisfied by g(t). We have

µ(t) = π(αg(t)) = g(t)−1 · (ectν0 · g(t)) = Ad∗g(t)ν(t),

where ν(t) = ectν0. Equivalently,

ν(t) = Ad∗
g(t)−1µ(t).
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Taking the time derivative of both sides of this equation, and evaluating at time t , we obtain,

cν(t) = Ad∗
g(t)−1(ad∗−ξ(t)µ(t)+µ̇(t)) = Ad∗

g(t)−1(ad∗−ξ(t)µ(t)+X−h (µ(t))+ cµ(t)),

where ξ(t) := g(t)−1 · ġ(t). The left-hand side is in fact cAd∗
g(t)−1µ(t) so we get

Ad∗
g(t)−1(ad∗−ξ(t)µ(t)+X−h (µ(t))) = 0, (3.12)

which is equivalent to

ad∗−ξ(t)µ(t)+ ad∗(δh/δµ)|µ=µ(t)
µ(t) = 0.

Therefore ξ(t)= (δh/δµ)|µ=µ(t), from which the statement of the theorem now
follows. �

Remark. Notice that µ(t) satisfies the conformal Lie–Poisson equations and as a result
the g(t) dynamics is affected by the conformal constant c. When c = 0 the µ(t) dynamics
reduces to Hamiltonian Lie–Poisson dynamics and the above algorithm recovers the known
reconstruction equations in that case.

4. Conformal vector fields on Poisson manifolds

The reduced vector fieldXc
h of the previous section has the property that its flow preserves

the Lie–Poisson bracket on g∗ up to a constant. Conformal vector fields on symplectic
manifolds also preserve the (canonical) Poisson bracket up to a constant. Therefore, we
expect that the results of the previous section can be generalized from symplectic to Poisson
manifolds. One substantially new feature enters: the dilation constant c may be a global
constant or merely constant on symplectic leaves.

We write L for a symplectic leaf and ωL for the symplectic form on the leaf.

Definition 2. Let P be a Poisson manifold on which the leaves of maximal dimension are
the level sets of a set of Casimir functions. The diffeomorphism ϕ is called conformal (or
C-conformal) if there exists a Casimir C such that for all f , g ∈ C∞(P ),

{f ◦ ϕ, g ◦ ϕ} = C{f, g} ◦ ϕ. (4.1)

It is called special conformal if there exists a constant c such that for all f , g ∈ C∞(P ),

{f ◦ ϕ, g ◦ ϕ} = c{f, g} ◦ ϕ. (4.2)

It is called Poisson if for all f , g ∈ C∞(P ),

{f ◦ ϕ, g ◦ ϕ} = {f, g} ◦ ϕ.
Before describing the behavior of conformal diffeomorphisms, we obtain a useful char-

acterization of the Poisson diffeomorphisms of a Poisson manifold P by looking at their
action on the symplectic leaves. Namely, they must map leaves to leaves symplectically.
This behavior also characterizes the conformal Poisson diffeomorphisms.
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Proposition 9. Let P be a Poisson manifold and ϕ : P → P be a diffeomorphism. Then ϕ is
Poisson if and only if for all z ∈ P ,ϕ maps the symplectic leafLz through z diffeomorphically
onto the leaf Lϕ(z) through ϕ(z) and this map is symplectic, i.e.,

ϕ∗ωLϕ(z)
= ωLz. (4.3)

Proof. If ϕ is a Poisson diffeomorphism, then the fact that it is Poisson guarantees that
Tzϕ|TzLz : TzLz → Tϕ(z)Lϕ(z) is surjective. Since ϕ is a diffeomorphism, this map must
also be injective. To see that ϕ restricted to Lz is surjective, note that every point z′ ∈ Lϕ(z)

can be connected to ϕ(z) by a sequence of Hamiltonian arcs. However, since, for every
h ∈ C∞(P ), T ϕ ·Xh◦ϕ = Xh ◦ ϕ, each Hamiltonian arc has a counterpart on Lz that maps
to it underϕ. Thus, there exists a z0 onLz such thatϕ(z0) = z′. We concludeϕ(Lz) = Lϕ(z).
Since ϕ is a diffeomorphism, ϕ|Lz must be one to one. Finally we show ϕ|Lz is symplectic.
Any tangent vector to Lz can be written as T ϕ−1 ·Xh(ϕ(z)) for some function h so that

ϕ∗ωϕ(z)(T ϕ−1 ·Xh(ϕ(z)), T ϕ−1 ·Xg(ϕ(z)))

= ωϕ(z)(Xh(ϕ(z)),Xg(ϕ(z))) = {h, g} ◦ ϕ(z) = {h ◦ ϕ, g ◦ ϕ}(z)
= ωz(Xh◦ϕ(z),Xg◦ϕ(z)) = ωz(T ϕ−1 ·Xh(ϕ(z)), T ϕ−1 ·Xg(ϕ(z))).

Conversely, suppose the leaves are symplectically diffeomorphic under ϕ. Fix z ∈ P and
f, g ∈ C∞(P ). To show {f ◦ ϕ, g ◦ ϕ}(z) = {f, g} ◦ ϕ(z) it suffices to show that Tzϕ ·
Xg◦ϕ(z) = Xg ◦ ϕ(z) since

d(f ◦ ϕ)(z) ·Xg◦ϕ(z) = df (ϕ(z)) · Tzϕ ·Xg◦ϕ(z).

Now, for each wϕ(z) ∈ Tϕ(z)Lϕ(z) there exists a unique yz ∈ TzLz with T ϕ(yz) = w. Thus

ωϕ(z)(T ϕ ·Xg◦ϕ(z), wϕ(z))= ϕ∗(ωϕ(z))(Xg◦ϕ(z), yz) = ωz(Xg◦ϕ(z), yz)
= d(g ◦ ϕ)(z) · yz = dg(ϕ(z)) · wϕ(z),

as required. �

Proposition 10. The diffeomorphism ϕ is conformal iff it maps leaves to leaves of the same
dimension and is conformal-symplectic on them; i.e., iff for each leaf L there is a constant
c such that

ϕ∗ωϕ(L) = cωL. (4.4)

It is special conformal iff c can be chosen to be independent of L. It is Poisson iff c ≡ 1.

Proof. The proof is a straightforward modification of Proposition 9. �

In the case that the leaves of P are not defined by Casimirs, one can take Proposition 10
as the definition of a conformal Poisson diffeomorphism.

We also have the classes of vector fields whose flows are Poisson or (special) conformal;
their defining equations are obtained by differentiating Eqs. (4.1) and (4.2).X is a conformal,
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special conformal, or Poisson vector field, if for all f , g ∈ C∞(P ),

X{f, g} = {Xf, g} + {f,Xg} − c{f, g}, (4.5)

where c is constant on leaves, constant, or zero.
One can also consider the leaf-preserving (conformal) Poisson diffeomorphisms and

vector fields, giving six classes of diffeomorphisms.

Example 2 (Skew product Hamiltonian systems). Let (M,−dθ) be an exact symplectic
manifold, let N be any manifold, and let P = M ×N where the leaves are M × constant.
Let H : P → R be a Hamiltonian. We extend XH and Z to P by letting them be zero in
the N component. Let Y be any vector field on N , which we extend to P by letting it be
zero in the M component. Let C : N → R be any function. Then the vector field

XC := XH + C(z)Z + Y

is C-conformal. We shall see in Proposition 14 that this describes all conformal vector fields
on P . In coordinates (q, p, y) we have

q̇ = Hp(q, p, y), ṗ = −Hq(q, p, y)+ C(y)p, ẏ = Y (y).

By the Darboux–Weinstein theorem [22], all conformal Poisson systems take this form in
any neighborhood in which the leaves have constant dimension. In the Poisson case, C ≡ 0,
this kind of vector field is called a “skew product Hamiltonian system”. We also note that
time-dependent conformal Hamiltonian systems can be regarded as autonomous conformal
Poisson systems in the extended phase space M × R.

Proposition 11. The conformal, special conformal, and Poisson diffeomorphisms each
form a group, with their vector fields as Lie algebras. Each has the leaf-preserving diffeo-
morphisms as a subgroup. The Poisson vector fields form an ideal in the special conformal
and in the conformal Lie algebras.

Proof. By iterating the definitions, it is easy to check that the conformal, special conformal
and Poisson diffeomorphisms form a group. It is also obvious that the composition of
two leaf preserving diffeomorphisms is again leaf preserving. Finally we check that the
subalgebra of Poisson vector fields is an ideal inside the conformal and special conformal
vector fields. Let X be a Poisson vector field and XC be conformal with Casimir C. Then,

[XC,X]{f, g} = (XCX − XXC){f, g}
=XC({Xf, g} + {f,Xg})−X({XCf, g} + {f,XCg} − C{f, g})
= {XCXf, g} + {Xf, XCg} − C{Xf, g} + {XCf,Xg} + {XCf,Xg}
+{f,XCXg} − C{f,Xg} − ({XXCf, g} + {XCf,Xg} + {Xf, XCg}
+{f,XXCg} − C{Xf, g} − C{f,Xg})
= {[XC,X]f, g} + {f, [XC,X]g},

as required. The same argument proceeds with C replaced by a constant c. �
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Proposition 12. The Hamiltonian vector fields form an ideal in the Lie algebra of conformal
vector fields.

Proof. For all f ∈ C∞(P ), we have

[XH,XC]f =XHXCf −XCXHf = {XCf,H } −XC{f,H }
= {XCf,H } − ({XCf,H } + {f,XCH } − C{f,H })
=C{f,H } − {f,XCH } = {f,CH−XCH },

and therefore

[XC,XH ] = XXCH−CH. � (4.6)

Conformal vector fields have special properties with respect to the foliations of P by
the symplectic leaves. In particular, at regular points of the foliation, they drop to the leaf
space. Since this will be developed further when we consider conformal vector fields with
symmetry, it is useful to recall some general concepts from the theory of foliations (see [17
pp. 34–35]). Let M be a smooth n-dimensional manifold on which we have a codimension
q, smooth foliation F with corresponding (n− q)-dimensional distribution P . Denote the
vector fields tangent to the foliation, with values in P , by XF .

Definition 3. A function f on M is basic if, for every Y ∈ XF , Y (f ) = 0.

Definition 4. An open set U in M is simple if the foliation, restricted to U is generated
by the inverse images of a submersion π : U → Ū where Ū is a quotient manifold of
dimension q. On such a simple open set, there are local coordinates adapted to the foliation
(x1, . . . , xn−q, y1, . . . , yq) such that the leaves are obtained by setting the last q coordinates
to a constant.

Then it is clear that every basic function on a simple open set U is projectable to a smooth
function on Ū . Finally we have

Definition 5. A vector field X on M is foliate if [X, Y ] ∈ XF for all Y ∈ XF .

Foliate vector fields have the property that on every simple open neighborhood, U , they
drop to the quotient manifold Ū . In terms of adapted local coordinates, the last q components
of a foliate vector field depend only on the variables y1, . . . , yq .

Applying these definitions to the irregular foliation of P by symplectic leaves we have

Proposition 13. XC is a foliate vector field.

Proof. [XC,XH ] is Hamiltonian from Eq. (4.6), and hence tangent to the symplectic
leaves. �

Therefore, in any simple open neighborhood, XC drops to the local space of leaves. In
the case that the symplectic leaves of maximal dimension are the level sets of the Casimir
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functions C1, . . . , Cq , the union of these leaves is a simple open neighborhood and the
Casimirs induce coordinates on the space of leaves. The dropped vector field can be written
in coordinates as

Ċj = fj (C1, . . . , Cq).

We can describe the conformal vector fields concisely if the manifold supports just one
special conformal vector field.

Proposition 14. Let Z be a special conformal vector field with c = 1. Then the Lie algebra
of conformal vector fields is the set

{X + CZ|X Poisson, C any Casimir}. (4.7)

Proof. Let XC be any C-conformal vector field. Then for all f , g ∈ C∞(P ),

(XC − CZ){f, g} − {(XC − CZ)f, g} − {f, (XC − CZ)g}
= (XC{f, g} − {XCf, g} − {f,XCg})− C(Z{f, g} − {Zf, g} − {f,Zg})
= (C − C){f, g} = 0

(using the Leibniz rule and that C is a Casimir), showing that X := XC − CZ is
Poisson. �

On the other hand, if Z is C-conformal but happens to be Poisson on some leaves (i.e.,
if C|L = 0 for some leaves L), then X + DZ, D any Casimir, is DC-conformal and hence
also Poisson on these leaves. Such a Z could not then be used to generate all conformal
vector fields. We are not sure if manifolds can support conformal but not special conformal
vector fields, however.

In many instances, the symplectic leaves are pairwise non-symplectomorphic, so Poisson
vector fields must preserve the leaves; if, in addition, H 1(L) = 0, then we can take X = XH

in Eq. (4.7) for some Hamiltonian function H .
We do not have a characterization of those Poisson manifolds which support confor-

mal vector fields. However, the following important example includes the canonical and
Lie–Poisson cases, and has the feature that Z is symmetric under the full general linear
group.

Example 3 (Homogeneous Poisson brackets). Let P = Rn with a Poisson bracket homo-
geneous of degree k, i.e.,

{xi, xj } ◦ d = αk{xi, xj }, (4.8)

where d : x 
→ αx is a dilation. Then for k �= 2,

Z = 1

2− k

∑
i

xi
∂

∂xi

is a special conformal vector field with c = 1.
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It is sufficient to check Eq. (4.5) for f = xi , g = xj . For X =∑
xi(∂/∂xi) we have

X{xi, xj }=
∑

xk
∂{xi, xj }

∂xk
= ∂

∂α
({xi, xj } ◦ d)|α=1 = ∂

∂α
αk{xi, xj }|α=1=k{xi, xj },

and

{Xxi , xj } + {xi,Xxj } − c{xi, xj } = (2− c){xi, xj }.
Therefore, X is (2− k)-conformal, which gives the result.

Note that for k = 2, this vector field is in fact Poisson. However, some quadratic Poisson
brackets do have conformal vector fields.

Example 4. On P = (R+)3, {xi, xj } = xixj , the vector field 1
2

∑
xi log xi(∂/∂xi) is

1-conformal.

Another source of examples is provided by the reduction theorem in the next section.

5. Symmetric conformal vector fields on Poisson manifolds

In this section we consider the consequences of the conformal vector field on P being
symmetric with respect to a Poisson action of a Lie group G. First we show in Theorem 3
that the symmetric conformal vector field drops to a vector field on P/G which is conformal
with respect to the quotient Poisson structure. Second, in the case that the action admits an
equivariant momentum map, the vector field also drops to another conformal vector field
(Theorem 4), making the situation analogous to the symplectic case of a dual pair. This
second quotient space is obtained by identifying points on the level sets of J on the same
symplectic leaf. (This result seems to be new even in the non-conformal, i.e. Poisson, case.)
Since each of these dropped vector fields is conformal they both drop to their respective
leaf spaces as in Proposition 13.

Theorem 3 (Conformal Poisson reduction). Let XC be a C-conformal vector field on the
Poisson manifold P that is symmetric relative to a Lie group G which acts on P by Poisson
diffeomorphisms. Assume that G acts in such manner that the quotient space is a smooth
manifold denoted as P/G. Then the reduced vector field on P/G is conformal relative to
the quotient Poisson structure.

Proof. Let π : P → P/G denote the quotient map. Let XP/G be the unique vector field
that satisfies T π · XC = XP/G ◦ π . Let f, g ∈ C∞(P/G) and F = f ◦ π , G = g ◦ π .
Notice that XP/G(f )([z]) = Xc(F )(z) so that

XP/G{f, g}([z])=XC{F,G}(z) = {XC(F),G}(z)+ {F,XC(G)}(z)− C{F,G}(z)
= {XP/G(f ) ◦ π, g ◦ π}(z)+ {f ◦ π,XP/G(g) ◦ π}(z)
−C{f ◦ π, g ◦ π}(z)
= {XP/G(f ), g}([z])+ {f,XP/G(g)}([z])− C([z]){f, g}([z]).
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In the last line we have used the fact that the Casimir C must be G-invariant and hence
defines a function C([z]). This follows since the left-hand side of the second equality is
G-invariant and so are the first and second terms of the right-hand side, thus implying
that C{F,G} is a G-invariant function. Since {F,G} is G-invariant, we conclude that C
is G-invariant as well. (This would not be true for all Casimirs C unless the action were
Hamiltonian.) The last equality shows thatXP/G isC([z])-conformal relative to the reduced
Poisson bracket. �

Note that by taking C = constant, the same result holds for special conformal vector
fields with symmetry.

An example of reduction of a symmetric conformal vector field is given by reducing the
Liouville vector field Z on T ∗Q by a cotangent lifted symmetry, producing a conformal
vector field on T ∗Q/G. We can obtain a simple decomposition of the reduced vector field if
we split the vector bundle T ∗Q/G into a Whitney sum (a direct sum of two vector bundles
with the same base).

Example 5 (Reduction of the Liouville vector field). LetA be a connection on the principal
bundle πQ : Q→ Q/G, and let π : T ∗Q→ T ∗Q/G as in Theorem 3. We make use of
the following bundle isomorphism [13]:

T ∗Q
G
� T ∗

(
Q

G

)
⊕ g̃∗, (5.1)

which is dual to the vector bundle isomorphism of the reduced tangent bundle, TQ/G �
T (Q/G)⊕ g̃ given by ϕA : [vq ] 
→ TqπQ · vq ⊕ [q,A(q)(vq)]. Then

ϕ−1
A (v[q] ⊕ [q, ξ ]) = [horqv[q] + ξQ(q)], (5.2)

where [, ] denotes an equivalence class for the group action on the appropriate space. The
desired isomorphism, Eq. (5.1), is then given by

(ϕ−1
A )∗([αq ]) = hor∗qαq ⊕ [q, J(αq)].

We compute the flow of T ((ϕ−1
A )∗) ◦ T π · Z, which is a well-defined vector field on the

Whitney sum bundle (Eq. (5.1)) since Z is G-invariant. The flow of Z on T ∗Q is ψt(αq) =
ectαq so that

(ϕ−1
A )∗ ◦ π(ψt (αq)) = hor∗q(e

ctαq)⊕ [q, J(ectαq)] = ecthor∗q(αq)⊕ ect[q, J(αq)].

Observe that this is the flow of the vector field which is the Liouville vector field onT ∗(Q/G)

in the first factor, and the radial vector field on each fiber of g̃∗ in the second factor. The
vector field projects to 0 on the base manifold Q/G.

A conformal vector field with a symmetry admitting a momentum map on a Poisson
manifold satisfies an analog of the momentum equation (2.10) for exact symplectic mani-
folds. This is made precise in the next proposition. Since it makes no use of Hamiltonian
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functions, it also extends Proposition 7 to the case H 1(M) �= 0, albeit with a slightly weaker
conclusion.

Proposition 15 (Conformal Poisson momentum equation). Suppose we have a left action
of G on P for which there exists an equivariant momentum map J : P → g∗. Let XC be a
G-invariant conformal vector field. Then the following equation is satisfied for all ξ ∈ g,
and for all h ∈ C∞(P ),

{XC(J (ξ))− CJ(ξ), h} = 0, (5.3)

where as usual J (ξ) = 〈J, ξ〉. In other words there is a Casimir XC(J (ξ)) − CJ(ξ)
corresponding to each Lie algebra element ξ . It follows that there exists a linear map
ψ : g→ Cas(P ) defined by

ψ(ξ) := XC(J (ξ))− CJ(ξ),

and its companion ψ : P → g∗ defined by

〈ψ(z), ξ〉 = ψ(ξ)(z).

Proof. We have

{XC(J (ξ)), h} =XC{J (ξ), h} − {J (ξ),XC(h)} + C{J (ξ), h}
=−XC(ξP (h))+ ξP (XC(h))+ C{J (ξ), h}
= [ξP ,XC](h)+ C{J (ξ), h} = C{J (ξ), h},

from which the statement follows. Notice that we use the G-invariance of XC in the last
equality. The existence and linearity of ψ are now immediate. �

Theorem 4. Let XC , G, and P be as in the preceding proposition. Let F be the intersection
of the foliations of P by symplectic leaves and by level sets of the momentum J. Then (i)
P/F is a Poisson manifold with respect to the quotient Poisson structure; (ii) XC drops
to this quotient, and (iii) the dropped vector field is conformal with respect to the quotient
Poisson structure.

Proof. Let π : P → P/F denote the quotient map, let f1, f2 ∈ C∞(P/F ) and let
F1 = f1 ◦ π , F2 = f2 ◦ π . We first show that the quotient Poisson bracket

{f1, f2}P/F := {F1, F2}
is well-defined, i.e. the right-hand side is constant on F . The tangent space to the foliation
at any point is spanned by the Hamiltonian vector fields of the G-invariant functions since
these are the only tangent vectors to the symplectic leaves that are also contained in the
levels of J. It therefore suffices to show that XH {F1, F2} = 0 for all such functions H ,
which will follow from {H, {F1, F2}} = 0. But

{H, {F1, F2}} = {{H,F1}, F2} + {F1, {H,F2}}.
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Since XH is tangent to both the symplectic leaves and the level surfaces of J, and Fi is
constant on this intersection, we must have

dFi ·XH = 0,

which implies {H,Fi} = 0 and hence XH {F1, F2} = 0. Since the quotient bracket is
well-defined it is necessarily a Poisson bracket. To establish (ii), we have to show that XC

is foliate, which is equivalent to LXH
XC being tangent to the foliation for all G-invariant

H . From Eq. (4.6), we have

LXH
XC = [XH,XC] = XCH−XCH . (5.4)

The two functions XCH and CH are both G-invariant, so the right-hand side is tangent to
the foliation. The calculation for (iii) is as for the previous proposition. �

We can put local coordinates on P/F by choosing a basis of Casimirs, C1, . . . , Cq so
that in a neighborhood U of a regular point of P , the symplectic leaves are the level sets of
the function K = C1×· · ·×Cq , K : U → Rq . Then on π(U) we have coordinates induced
by the basic (Definition 3) functions on P , (K,C) = (J (ξ1), . . . J (ξk), C1, . . . , Cn). In
these coordinates the dropped vector field XP/F has the form:

K̇ = f (K), J̇ = CJ+ ψ (5.5)

for some vector field f onRq . Recall that the momentum, J is only defined up to a Casimir.
Therefore, if C(z) �= 0 for all z ∈ P , then defining J̃ = J + ψ/C we have

˙̃
J = CJ̃ , (5.6)

i.e., the momentum equation is again linear and radial.
We consider two special cases. First, the case when P is symplectic. The symmetric

conformal vector field Xc is then foliate with respect to the level sets of J and defines a
vector field on g∗ given by

X(µ) = T J ·Xc(z)

for z ∈ J−1(µ). To see this, note that Xc is foliate with respect to J if and only if for all
µ ∈ J(P ) ⊂ g∗, and for all z1, z2 ∈ J−1(µ), we have

Tz1 J ·Xc(z1) = Tz2 J ·Xc(z2). (5.7)

However,

Tz1 J ·Xc(z1)−Tz2 J ·Xc(z2)cJ(z1)+ψ(z1)−(cJ(z2)+ψ(z2)) = ψ(z1)− ψ(z2)=0,

where the last equality follows from the fact that each Casimir ψ(ξ) is constant on P . Thus
for symplectic manifolds, every symmetric conformal vector field is bifoliate on P and
therefore defines a dropped vector field on each leg of the dual pair P/G← P → g∗. The
stronger hypothesis of Proposition 7, that Xc be conformal Hamiltonian, is not required.
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The Casimir ψ in Eq. (5.5) is a constant, but as in Eq. (5.6) this constant can be eliminated
when c �= 0 by a shift in J . On the other hand, if Xc = Xc

H , then dropped vector field is
always linear and radial, from Proposition 7.

Second, if P is Poisson and the levels of J are contained in the symplectic leaves, then
the foliation F of P reduces to the foliation J so Theorem 4 tells us that T J ·XC defines a
vector field on g∗. There is a sufficient condition for this to hold, namely that the image of
the G-invariant functions under the Poisson tensor has full rank.

There are many examples of conformal Poisson systems with symmetry. Often the radial
vector fieldRc is conformal, and is invariant under any linear group action, as in the following
example.

Example 6 (Lie–Poisson). Consider the radial vector field on g∗ given by Rc(µ) = cµ.
Denote the natural coadjoint action G× g∗ → g∗ by

g · µ := Ad∗
g−1µ.

This action is Hamiltonian with momentum map given by J(µ) = −µ. Rc is G-invariant
since

ϕ∗gR
c(µ) = T ϕg−1 · Rc(g · µ) = d

dt

∣∣∣∣
t=0

g−1 · (g · µ+ tcg · µ) = cµ = Rc(µ).

We then have T J · Rc = −Rc = cJ as required.

Further examples of Poisson manifolds supporting symmetric conformal vector fields are
produced by symplectic reduction by stages [11,12]. To do this we first reduce Poisson and
then attempt to induce a momentum map for the second stage action on a reduced Poisson
manifold. Since [11,12] only deal with symplectic reduction we first develop the necessary
theory.

Let M be a group which acts on the Poisson manifold P by Poisson maps admitting a
momentum map J : P → m∗. Suppose N is a normal subgroup of M , which therefore
also has an action admitting the momentum map JN = ι∗nJ. It is easy to see that P/N is a
Poisson manifold and M/N acts by Poisson morphisms. Under what conditions does this
action admit a momentum map? The quotient action is defined by the equation,

[m] · [z] = [m · z], (5.8)

where the [m] is the equivalence class of the point m ∈ M in M/N . Alternatively we write
[m] = πM(m), where πM : M → M/N . Note that this is the quotient map for the left
action ofN onM . Take a point in the Lie algebra of the quotient group, [ξ ] ∈ m/n. Denoting
by π : P → P/N the quotient map for the left action of N on P , we have

Theorem 5. Let P be a Poisson manifold on which the group M acts by Poisson diffeomor-
phisms admitting an equivariant momentum map, JM : P → m∗. Suppose N is contained
in the center of M. Then P/N is a Poisson manifold on which M/N acts admitting a
momentum map JM/N : P/N → m∗/n∗.
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Proof. The quotient action admits a momentum map if and only if for every ξ ∈ m, and
every function f ∈ C∞(P/N) we have

[ξ ]P/N(f ) = {f, J ([ξ ])}P/N (5.9)

for some linear function J : m/n→ C∞(P/N). Now, by definition of the quotient action,
we have

[ξ ]P/N(f )= d

dt

∣∣∣∣
t=0

f (expM/N t[ξ ] · [z]) = d

dt

∣∣∣∣
t=0

f ([expMtξ ] · [z])

= d

dt

∣∣∣∣
t=0

F(expMtξ · z) = dF(z) · ξM(z) = {F, 〈JM, ξ〉}(z)
= {f ◦ πN, JM(ξ)}(z),

where F = f ◦ πN and we have used the fact that πM is a group homomorphism and
therefore

expM/N ◦ Teπ
M = πM ◦ expM.

Comparing with Eq. (5.9), we see that for the M/N action to admit a momentum map, we
require JM(ξ) to be N -invariant for each ξ ∈ m. Infinitesimally, this requires that for all
η ∈ n,

ηP (JM(ξ)) = 0 = {JM(ξ), JM(η)}.
Now, from the assumption that the momentum map is Ad∗-equivariant, it follows that

{JM(ξ), JM(η)} = J ([ξ, η]).

We can immediately conclude that if [ξ, η] = 0 for all ξ ∈ m and all η ∈ n then the
right-hand side of the above equation is zero since J is a linear map. The statement of the
theorem is now immediate. �

Remark. Suppose P = T ∗Q with canonical symplectic form. The existence of an induced
momentum map on the quotient Poisson manifold then requires that n be contained in the
center of m. This is because J (ξ)(αq) = 〈αq, ξQ〉 and so J ([ξ, η]) = 0 if and only if
[ξ, η]Q = 0. However, since the action of M on Q is presumed to be free, an infinitesimal
generator vanishes if and only if the Lie algebra element is zero. Thus we require [ξ, η] = 0
for all ξ ∈ m and for all η ∈ n.

Example 7 (Reduction by stages). Starting with a cotangent bundle, we can produce a
category of examples of conformal vector fields with symmetry on non-symplectic Pois-
son spaces which satisfy the hypotheses of Proposition 15. The idea is to half reduce the
cotangent bundle by reducing by a central subgroup; the quotient will then act on the re-
duced space to produce the example. We start with M ×T ∗Q→ T ∗Q acting by cotangent
lift. Let N be contained in the center. Let H be an M-invariant function on T ∗Q so that
Xc

H is an H -invariant conformal vector field on T ∗Q. Quotienting by the N action we
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obtain by Theorem 3 a conformal vector field on the Poisson manifold T ∗Q/N . In fact
this manifold is diffeomorphic to the Whitney sum bundle T ∗(Q/N) ⊕ ñ∗ and carries a
non-canonical bracket. Furthermore, the quotient group M/N acts on it by Poisson maps
and admits a momentum map JM/N by Theorem 5. It is straightforward to show that this
action leaves the vector field T πN ·Xc

H invariant and so we have satisfied the hypotheses of
Proposition 15.

Example 8 (The dual of a Lie algebroid). The conformal vector field on T ∗Q/G obtained
in Example 5 by reduction is in fact a special case of a conformal vector field on the dual of
a Lie algebroid. Recall that a Lie algebroid,A, is a vector bundle over a manifold M whose
sections form a Lie algebra which satisfy, for any smooth function f on M ,

[f ξ, η] = f [ξ, η]− (ρ(η)f )ξ (5.10)

for a bundle map called the anchor, ρ : A→ TM, that maps sections ofA homomorphically
into vector fields on M . The dual of the algebroid,A∗, then carries a Poisson structure which
is uniquely determined by specifying the bracket on functions which are affine on the fibers
of A∗. If we let f, g ∈ C∞(M), ξ, η ∈ Γ (A), then the bracket on A∗ is determined by

{f, g} = 0, {f, ξ} = ρ(ξ)(f ), {ξ, η} = [ξ, η],

where ξ and η are regarded as linear functions on the fibers of A via the natural pairing.
Now consider the vector field Rc tangent to the fibers of A∗ and uniquely determined by
its action on the functions linear on the fibers giving Rc(ξ) = cξ . In coordinates (q, λ) on
A, and inducing coordinates (q, µ) on A∗, we have

Rc(q, µ) = cµ
∂

∂µ
.

It suffices to check the conformal identity, Eq. (4.5) for pairs of functions, {f, g}, {f, ξ},
and {ξ, η} in the defining relations of the bracket since both the bracket and the vector field
are determined by their action on affine functions. First, since f and g are constant on the
fibers of A∗, we have Rc(f ) = 0 so Rc{f, g} = 0 = {Rc(f ), g} + {f,Rc(g)} − c{f, g}
since each term is zero. Furthermore, notice that

Rc(ρ(ξ)(f )) = 0,

since ρ(ξ)(f ) is also constant on the fibers. Therefore,

Rc{f, ξ} = 0 = {Rcf, ξ} + {f,Rcξ} − c{f, ξ} = 0+ {f, cξ} − c{f, ξ} = 0.

Finally,

Rc{ξ, η} = Rc[ξ, η] = c[ξ, η] = {Rcξ, η} + {ξ, Rcη} − c{ξ, η}
as required.

In the case that A = T ∗Q/G, the vector field Rc is in fact the projection of cZ, the
Liouville vector field, to the quotient by the G action.
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6. Open problems

We close with some remarks and open problems.

1. In Example 5 we computed the reduction of the Liouville vector field Z to T ∗Q/G.
What is the analogue of the reconstruction Theorem 2 in this case?

2. Symplectic manifolds have only one leaf and hence the conformal and special confor-
mal vector fields coincide on them. Reducing therefore only leads to another special
conformal vector field, even though the Poisson manifold it lives on may also support
non-special ones. Reducing simple mechanical systems with symmetry therefore leads
to a range of natural special conformal systems on various Poisson manifolds. If one
takes the point of view that non-canonical Poisson manifolds arise primarily by reduc-
tion, then one must ask: Does non-special conformal dynamics ever arise naturally in
mechanics?

3. One can ask if it is possible for a system to do anything else to a symplectic structure,
for example dissipate it at a non-constant rate. This is not possible when dim M > 2,
for it requires ω(u, v) and (LXω)(u, v) to have different signs for all vector fields u, v,
which implies LXω = fω for some function f : M → Rwith f (x) ≤ 0 for all x ∈ M .
But then 0 = d(f ω) = df ∧ ω⇒ f = constant [9], and we are back in the conformal
case. There remains a possibility for the symplectic structure to interact with some other
structure on the manifold.

4. Given a vector field on the space of symplectic leaves of a Poisson manifold, when does
it lift to a (conformal) Poisson vector field?

5. Which Poisson manifolds support conformal vector fields? Can they support conformal
but not special conformal vector fields? Does the description of conformal vector fields
in Proposition 14 extend to conformal Poisson maps?

6. What are the characteristic features of conformal dynamics, i.e. what are its homomor-
phism invariants?
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