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Solitonic vortices and the fundamental modes of the “snake instability”: Possibility of observation
in the gaseous Bose-Einstein condensate
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The connection between quantized vortices and dark solitons in a waveguidelike trap geometry is explored
in the framework of the nonlinear Sclioger equation. Variation of the transverse confinement leads from the
guasi-one-dimension&l D) regime, where solitons are stable, to @b 3D) confinement, where soliton stripes
are subject to a transverse modulational instability known as the “snake instability.” We present numerical
evidence of a regime of intermediate confinement where solitons decay into single, deformed vortices with
solitonic properties rather than vortex pairs as associated with the “snake” metaphor. Further relaxing the
transverse confinement leads to the production of two and then three vortices, which correlates perfectly with
a Bogoliubov stability analysis. The decay of a stationary dark solidonplanar nodginto a single solitonic
vortex is predicted to be experimentally observable in a 3D harmonically confined dilute-gas Bose-Einstein
condensate.

DOI: 10.1103/PhysRevA.65.043612 PACS nunter03.75—b, 05.45.Yv, 42.65.Tg

Solitons and quantized vortices are fundamental excitaformation[9]. The mechanism of decay at the onset of insta-
tions of nonlinear media. Quantized vortices, often regardedility, however, has not been fully revealed so far.
as an indicator for superfluidity, are topological defects in In this paper we study the modes of instability of a sta-
(2+1)- or (3+1)-dimensional fluids. Dark solitons in their tionary soliton as a function of the transverse confinement
purest form are solitary, nondispersive density-notch soluk{, measured in terms of the condensate healing leggth
tions to (1+1)-dimensional, nonlinear wave equations with [12,13. The onset of instability at,Z6¢ is initiated by the
extraordinary stability properties. It has been known, how-emergence of a nontrivial stationary stésee Fig. 1b)] of
ever, for many years that solitonic wave froriggso called  lower energy than the corresponding stationary soliton. We
band solitons or soliton stripes1 two- or three-dimensional call this state a solitonic vortefSV). A solitonic vortex is a
media are unstablel-5]. The metaphor of a “snake” insta- single confined and deformed vortex with solitonic proper-
bility (SI) has been introduced in this context by Zakharov
and Rubenchi1] in order to refer to the antisymmetric

modulation(bending of the solitonic wave front caused by P
long-wavelength perturbationis3]. Later it has been pre-

dicted by numerical studies of time evolution that the SI (a) o :
eventually leads to the formation of arrays of vortices with o o

alternating charg¢2,4]. The first experimental evidence of o
the SI and subsequent formation of vortices was observed ii
nonlinear opticg6,7].

More recently, dark solitons have been observed in
trapped dilute-gas Bose-Einstein condensd&Cs [8], 0
and the decay of a stationary soliton into closed loops of
vortex filaments, much resembling smoke rings, has beel (b)
observed in a spherical harmonic trf§|. Stationary dark 1
solitons, like the example shown in Fig(al, are nodes
(nodal lines or planes in 2D or 3D, respectivelly the wave
function as opposed to traveling solitons, which are also re-
ferred to as gray solitons. Theoretically, the stability of sta-
tionary solitons in harmonically trapped BECs had been in- <
vestigated before by Muryshest al. [10] and Federet al. JES 0
[11], based on a linear stability analysis using the Bogoliu-

bov equations. While both papers identify a regime of Stabll'angular box trap with hard-wall boundary conditions generated by

ity for stationary Sol!tons In eloqgated trap.s at low Qensny a%maginary-time propagation of the nonlinear Salinger equation:
expected from earlier work3], it was conjectured in Ref. (5 stationary solitor(line nodé and (b) stationary solitonic-vortex
[10] that the mechanism of instability at increasing densitystate. The complex wave functiof is represented by the density
was vortex pair production in analogy to the Sl. Fedeal.  p=|y|? and the phaseb=arg(y). Each subplot shows a surface
[11] refined and partially corrected the results of R@0]  plot and gray-scale coded plots of the density and the phase modulo
and predicted the later experimentally observed vortex rin@ .
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FIG. 1. Two stationary “one-defect” excited states in a 2D rect-
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ties [13]. For transverse confinements oE%Ltg 10¢ the (a)
strong coupling of the stationary soliton to the more stable o0.07} —o— soliton
single SV is the only decay mechanism available, in contrast * sV
to what has been seen and expected in earlier \&f-11].
The SV therefore, presents the smallest possible unit of de-§
cay, which persists in geometries where the transverse con- §0.05¢
finement is too tight for vortex-ringin 2D, vortex paiy for-
mation. Under less restrictive confinement, two and then
three vortex channels opedifior L;=10¢ and L;=13¢, re-
spectively. The one, two, and three vortex instabilities will
be seen to correlate perfectly with a Bogoliubov stability
analysis. 107'F
The essential physics involved reveals itself from the ®) x x x
studies of the time-dependent Gross-Pitaevskii or nonlinear
Schralinger equation(NLSE), which presents the relevant
mean-field theory for a zero-temperature BE@] and also
applies to nonlinear wave propagation in op{i&§],

idyp=[—V2+V+gug| 2]y (1)

In the dimensionless Eq1l), the condensate wave function
Y(r,t) satisfies the following normalization condition:
fUB|¢|2dr=1, wherevg is the volume of a box containing

the trapped condensate. The external trapping potential is FIG. 2. SV and soliton properties as a function of the transverse
given by V and g is the nonlinear coupling constant. We confinement.,. Part(a) shows the excitation energies of the sta-
restrict ourselves to a repulsive nonlinearity defocusing tionary soliton and SV state. The energy difference is shown on a
NLSE) g>0. The relevant size scale for nonlinear structuredogarithmic scale in Bar(b); The simulations were done in a rect-
like solitons[15] and vorticeg 16] is the condensate healing angular box of size 8x64¢ for different values of the nonlinear

length =1/ ng| ¢| ¢ Where~§= 8maN/(gug) is the unit coupling_constarg, which changes the effective transverse confine-
of length used in Eq(1) for a BEC withN particles and an  MentL/£é=84g.
swave scattering lengtla. Note that for fairly uniformly

distributed condensates, the healing length is givenéby function of the transverse confinementin terms ofé. For a

=1/Jgé. The application of NLSE solutions of the type given wave functiony, the energy is given by the formula
shown in Fig. 1 has been fully confirmed empirically by the E= [ (— #* V2¢+gug/24|*+V[4*)dr.  The soliton-
experiments of Refs[8,9]. In tightly confined BECs, the excitation energy exhibits a linear dependence on the varia-
current mean-field theory is justified as long as the transversiéon of the length scale reflecting the localization of the ex-
dimensions are greater thgrand¢>a is satisfiedseg[17]). citation in one and extension in the other spacial dimension.
We initially consider a 2D rectangular geometry whereThe SV energy is always lower than the soliton energy and
the trapping potentiaV is represented by box boundary con- grows more slowly with the box size, reflecting the expected
ditions. The chosen aspect ratio, length/width, of 8 simulateogarithmic behavior for large boxd46]. Below a critical

a transversely confined, waveguidelike geometry. The staconfinement corresponding to a box width-e6& we do not
tionary vortexlike state with a node and phase singularity atind any stationary SV solutions but instead the imaginary-
the trap center was found by imaginary-time propagation angime propagation converges to the soliton solution. The loga-
confirmed by real-time propagation of the NLSE3]. In  rithmic plot of the energy difference between the soliton and
addition to seeding this relaxation procedure with a suitablghe v energies shown in Fig(l® very much indicates a
phase profile, we also restricted the symmetry of the densityonanalytic curve joining or curve crossing. Following the
||? to be even in both spacial directions. A second stationsy solution from wide confinement to the critical point, the
ary state (a dark band soliton was also generated by yortex wave function shows an increasingly deformed den-
imaginary—time propagation with the constraint of odd Sym-sity and Squeezed phase Signa](m Fig. 1land eventually
metry in the longitudinal direction of the trap. Figure 1 coincides with the soliton wave function at the critical con-
shows the resulting wave functions. The vortexlike wavefinement.
function of Flg Ib) is Clearly ﬂstorted and affected by the The band solitons and SV states from Figa)zare sta-
tight traverse confinement ofé8 We have argued in Ref. tionary states. In wide enough confinement, however, band
[13] that such a tightly confined vortex acquires solitonic solitons may exhibit the SI mentioned earlier: Tiny imperfec-
properties and, therefore, should be called a solitonic vortexjons of stationary band solitons may lead to a transverse
further discussed in18|. modulation and grow during real-time propagation at an ini-
Figure Za) shows the excitation energy of the stationarytially exponential rate. The stability of the stationary solu-
SV and soliton state with respect to the ground state as tions of the NLSE can be tested in a linear stability analysis
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FIG. 3. Bogoliubov spectrum of the stationary soliton in a 2D . .
box as a function of the box width at constant average density. The FIG. 4. (Color SV in a 3D elongated harmonic trap generated
insets relating to box widths df=7¢, 12¢, and 1& show density ~ PY decay of a perturbed stationary soliton state. Shown is the sur-
plots of transient patterns in the decay of the perturbed soliton statéce of constant densitfat 0.16 of the maximum densjtyand a
(see text after real-time propagation fdr=26, 31, and 26 in the color-coded plot of the phase in the horizontal plane intersecting the
units of Eq.(1), respectively. The perturbed solitonkat SE on the trap center. The transverse confinement~7.7 was computed by

contrary, shows no appreciable decay after 100 time units. Théhe max‘m“”_‘ valuc_a of the_line_ integrﬁ&g(r)‘ld_staken along t_he
imaginary modes are marked according to the nature of the eiger%[alnsverse d|m§n3|on, Wh'(.:h is more appropriate for measuring the
vectoru leading to single-vortex), double-vortex ), or triple-  TanSverse confinement of inhomogeneous condensates than the box
vortex (V) decay. The anomalous modes of the nodal-plane stat&wdth [13]. For details of the simulation see text.

(X) and stationary single-svortex state) (are also indicated. propagation seeded with noiégee insets Also collisions of
noisy gray solitons show the robust, particlelike behavior

employing the famous Bogoliubov equatlc[ﬂ:Q], which can expected from 1D soliton theofyL8]. For trap widths 5.5
be derived from a linear-response expansion of the time-

dependent NLSIE20]. In the units of Eq(1) these equations ~b=9.5¢, one purely imaginary eigenvalue exists in the Bo-

read goliubov spectrum. According to the numerical results, the
emergence of this imaginary eigenvalue coincides with the
Lu;(r)—gvgl¥(r)]%;(r)= €u;(r), (20  emergence of the SV as a symmetry-breaking stationary state
of lower energy than the corresponding band soliton. In-
Loj(r)—guel ¢* (N T2uj(r) = — v, (1), (3)  creasing the box width, a second and eventually a third

imaginary eigenvalue appears. The stability of the stationary

with £=—V2+V(r) + 2gug| #(r)|>— &, and is the chemi- soliton was probed using real-time propagation seeded with
cal potential of the stationary wave functioms(r,t) 0.01% white nois¢22]. While there is no appreciable decay
=exp(iut)y(r). The solutions of the Bogoliubov equation in tight confinement, we clearly find that the soliton instabil-
with eigenvalues; and eigenvectorsuf ,v;) have the fol- ity ;_S aSS_O‘f{'r?ted with thehformatlontv(\?f onea :\r,]vo, and three
lowing interpretation in terms of small-amplitude motion VOrtCes In the regimes where one, two, and three Imaginary
around a stationary solution of the NLSES]: Small posi- eigenvalues are present as shown in the insets of Fig. 3. The
tive ¢ at positive “norm” 77j=f(|uj|2—|vj|2)dr descripe  €igenvectorsy;, localized within about one healing length
small oscillations around the stationary state with increasind’m the nodal line of the soliton, also support this result
energy. Solutions with negative eigenvalugsand positive 1 18]- The patterns shown in Fig. 3 are by no means stationary
7; are called anomalous modes. They indicate a continuoyRut rather form tranS|er_1t states followed by incomplete re-
transformation of the stationary state to a state of lower encuUrrences of the nodal line and eventual further decay where
ergy. Anomalous modes exist for the trapped vortex as welYOrticés move to the edge of the trap and vorticity is de-

as for dark solitons in 1D and merely express the thermodyStroyed. The complicated dynamical patterns showing a mix-
namic instability of these excitations. Complex or purelyturé of decay and strong mode coupling are certainly due to

imaginary eigenvalues;, however, indicate a dynamical in- EN€r9Y conservation in the NLSE and to the small scale of
stability. They further implyz; =0 [16,21. the trap used in the simulation where radiated phonons lin-
Figure 3 shows the pureIJy imagiﬁary and anomalous eider- We expect further stabilization of the vortex patterns in
genvalues of the Bogoliubov equation for a stationary band@nder raps where energy released in the decay process can
soliton in a rectangular box of dimensidrx 16?&3 2 func- distribute itself over a larger area. The observed decay pat-

. . . ) terns vary depending on the exact form of the initial pertur-
tion of the box widthb~L at constant density. For narrow bation by noise. In contrast to the soliton, the stationary SV

traps withb§5.SE we find one anomalous but no complex shows an entirely real Bogoliubov spectrum with one
eigenvalues, like for 1D solitons. Additionally, the soliton anomalous mode also shown in Fig. 3. Further, real-time
wave function shows no appreciable decay in real-timgropagation of perturbed SVs shows no appreciable de-
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cay. In this sense, the SV is the more stable object than thepond to Fig. 4 of Refi11] at an aspect ratio ab,/w,=4
stationary soliton. with w,=27X50 rad/s. The corresponding imaginary Bo-
Finally, we would like to comment on the 3D harmonic- goliubov modeu; has an azimuthal coordinate dependence
trap geometry studied earlier in the experiment by Andersorf exp(¢), where ¢ is the azimuthal angle, and much re-
et al.[9] and in theoretical work by Muryshest al.[10]and  semples the first imaginary mode in the 2D box discussed
Federet al.[11]. Both experimen{9] and theory 11] report  apove. The predicted decay of the band soliton into a single
vortex-ring format!on dunn_g the decay of a stationary solitong\/ nas not been seen, or predicted, before and should be
(nodal-plane stajen spherical9,11] and elongate@ll] ge-  gagily observable with current experimental techniques.

ometries at fairly high densities, which is indicated by the = 501, 4ing, we have identified the fundamental modes of
hature of com_plex modes in the Bogollubqv spectrum of thethe Sl for transversely confined geometries: Production of
stationary solitor{11]. It has also been pointed out that the one, two, and three vortices correlates with imaginary modes

Bogoliubov spectrum becomes entirely real at sufficiently. ) .
: . S in the Bogoliubov eigenvalue spectrum. Departure from the
low particle number or high aspect ratio in elongated traps, ; . o . S
uasi-1D regime of stability of solitons is indicated not only

However, the decay mechanism in the presence of a sing y a linear stability analysis but also by the emergence of a

Imaginary _mod_e(as shown in Fig. 4 of Ref11)) of a sta solitonic vortex as a stationary state of lower energy than the
tionary soliton in an elongated trap has not been revealed so . .
) h . corresponding dark soliton. We demonstrated that the decay

far. Imaginary- and real-time propagation clearly show that & : . . ;
of a soliton into a single svortex is a fundamental mode of

stationary SV solution exists in this regime and that. it hasnstability in 2D box geometry and 3D elongated harmonic
lower energy than the stationary soliton. The density an raps

phase profile of the stationary SV state are very similar to the
dynamically generated pattern shown in Fig. 4. This figure We would like to thank Yuri Kivshar for a discussion and
shows the transient decay product of a perturbed stationafpavid Feder for helpful comments and access to unpublished
black soliton after real-time propagation for 100 ms, seededesults. Support from the National Science Foundation and
initially with 0.01% white noise. The parameters and poten-the Alexander von Humboldt Foundatiéd.B) is gratefully
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