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Solitonic vortices and the fundamental modes of the ‘‘snake instability’’: Possibility of observation
in the gaseous Bose-Einstein condensate

Joachim Brand and William P. Reinhardt
Department of Chemistry, University of Washington, Seattle, Washington 98195-1700

~Received 29 May 2001; published 1 April 2002!

The connection between quantized vortices and dark solitons in a waveguidelike trap geometry is explored
in the framework of the nonlinear Schro¨dinger equation. Variation of the transverse confinement leads from the
quasi-one-dimensional~1D! regime, where solitons are stable, to 2D~or 3D! confinement, where soliton stripes
are subject to a transverse modulational instability known as the ‘‘snake instability.’’ We present numerical
evidence of a regime of intermediate confinement where solitons decay into single, deformed vortices with
solitonic properties rather than vortex pairs as associated with the ‘‘snake’’ metaphor. Further relaxing the
transverse confinement leads to the production of two and then three vortices, which correlates perfectly with
a Bogoliubov stability analysis. The decay of a stationary dark soliton~or, planar node! into a single solitonic
vortex is predicted to be experimentally observable in a 3D harmonically confined dilute-gas Bose-Einstein
condensate.
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Solitons and quantized vortices are fundamental exc
tions of nonlinear media. Quantized vortices, often regar
as an indicator for superfluidity, are topological defects
~211!- or ~311!-dimensional fluids. Dark solitons in the
purest form are solitary, nondispersive density-notch so
tions to ~111!-dimensional, nonlinear wave equations wi
extraordinary stability properties. It has been known, ho
ever, for many years that solitonic wave fronts~also called
band solitons or soliton stripes! in two- or three-dimensiona
media are unstable@1–5#. The metaphor of a ‘‘snake’’ insta
bility ~SI! has been introduced in this context by Zakhar
and Rubenchik@1# in order to refer to the antisymmetri
modulation~bending! of the solitonic wave front caused b
long-wavelength perturbations@3#. Later it has been pre
dicted by numerical studies of time evolution that the
eventually leads to the formation of arrays of vortices w
alternating charge@2,4#. The first experimental evidence o
the SI and subsequent formation of vortices was observe
nonlinear optics@6,7#.

More recently, dark solitons have been observed
trapped dilute-gas Bose-Einstein condensates~BECs! @8#,
and the decay of a stationary soliton into closed loops
vortex filaments, much resembling smoke rings, has b
observed in a spherical harmonic trap@9#. Stationary dark
solitons, like the example shown in Fig. 1~a!, are nodes
~nodal lines or planes in 2D or 3D, respectively! in the wave
function as opposed to traveling solitons, which are also
ferred to as gray solitons. Theoretically, the stability of s
tionary solitons in harmonically trapped BECs had been
vestigated before by Muryshevet al. @10# and Federet al.
@11#, based on a linear stability analysis using the Bogo
bov equations. While both papers identify a regime of sta
ity for stationary solitons in elongated traps at low density
expected from earlier work@3#, it was conjectured in Ref
@10# that the mechanism of instability at increasing dens
was vortex pair production in analogy to the SI. Federet al.
@11# refined and partially corrected the results of Ref.@10#
and predicted the later experimentally observed vortex r
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formation@9#. The mechanism of decay at the onset of ins
bility, however, has not been fully revealed so far.

In this paper we study the modes of instability of a s
tionary soliton as a function of the transverse confinem
L t , measured in terms of the condensate healing lengtj

@12,13#. The onset of instability atL t'.6j is initiated by the
emergence of a nontrivial stationary state@see Fig. 1~b!# of
lower energy than the corresponding stationary soliton.
call this state a solitonic vortex~SV!. A solitonic vortex is a
single confined and deformed vortex with solitonic prop

FIG. 1. Two stationary ‘‘one-defect’’ excited states in a 2D re
angular box trap with hard-wall boundary conditions generated
imaginary-time propagation of the nonlinear Schro¨dinger equation:
~a! stationary soliton~line node! and~b! stationary solitonic-vortex
state. The complex wave functionc is represented by the densit
r5ucu2 and the phasef5arg(c). Each subplot shows a surfac
plot and gray-scale coded plots of the density and the phase mo
2p.
©2002 The American Physical Society12-1



bl
ra

d
co

e

ill
ity

he
e
t

n
:

l
e

re
g

y
e
he

er

re
n-
te
st

a
an

b
si
on
y
m
1
v
e
.
ic

te

ry
s

a

ria-
x-

ion.
nd

ted

ry-
ga-
nd

e
e

en-

n-

and
c-
rse
ni-
u-
sis

rse
a-
n a
t-

r
e-

JOACHIM BRAND AND WILLIAM P. REINHARDT PHYSICAL REVIEW A 65 043612
ties @13#. For transverse confinements of 6j',L t'
,10j the

strong coupling of the stationary soliton to the more sta
single SV is the only decay mechanism available, in cont
to what has been seen and expected in earlier work@3,9–11#.
The SV therefore, presents the smallest possible unit of
cay, which persists in geometries where the transverse
finement is too tight for vortex-ring~in 2D, vortex pair! for-
mation. Under less restrictive confinement, two and th
three vortex channels open~for L t*10j and L t*13j, re-
spectively!. The one, two, and three vortex instabilities w
be seen to correlate perfectly with a Bogoliubov stabil
analysis.

The essential physics involved reveals itself from t
studies of the time-dependent Gross-Pitaevskii or nonlin
Schrödinger equation~NLSE!, which presents the relevan
mean-field theory for a zero-temperature BEC@14# and also
applies to nonlinear wave propagation in optics@15#,

i ] tc5@2¹21V1gvBucu2#c. ~1!

In the dimensionless Eq.~1!, the condensate wave functio
c(r ,t) satisfies the following normalization condition
*vB

ucu2dr51, wherevB is the volume of a box containing
the trapped condensate. The external trapping potentia
given by V and g is the nonlinear coupling constant. W
restrict ourselves to a repulsive nonlinearity~or defocusing
NLSE! g.0. The relevant size scale for nonlinear structu
like solitons@15# and vortices@16# is the condensate healin
length j51/AgvBucu2j̃, where j̃58paN/(gvB) is the unit
of length used in Eq.~1! for a BEC withN particles and an
s-wave scattering lengtha. Note that for fairly uniformly
distributed condensates, the healing length is given bj̄

51/Agj̃. The application of NLSE solutions of the typ
shown in Fig. 1 has been fully confirmed empirically by t
experiments of Refs.@8,9#. In tightly confined BECs, the
current mean-field theory is justified as long as the transv
dimensions are greater thanj andj@a is satisfied~see@17#!.

We initially consider a 2D rectangular geometry whe
the trapping potentialV is represented by box boundary co
ditions. The chosen aspect ratio, length/width, of 8 simula
a transversely confined, waveguidelike geometry. The
tionary vortexlike state with a node and phase singularity
the trap center was found by imaginary-time propagation
confirmed by real-time propagation of the NLSE@13#. In
addition to seeding this relaxation procedure with a suita
phase profile, we also restricted the symmetry of the den
ucu2 to be even in both spacial directions. A second stati
ary state ~a dark band soliton! was also generated b
imaginary-time propagation with the constraint of odd sy
metry in the longitudinal direction of the trap. Figure
shows the resulting wave functions. The vortexlike wa
function of Fig. 1~b! is clearly distorted and affected by th
tight traverse confinement of 8j̄. We have argued in Ref
@13# that such a tightly confined vortex acquires soliton
properties and, therefore, should be called a solitonic vor
further discussed in@18#.

Figure 2~a! shows the excitation energy of the stationa
SV and soliton state with respect to the ground state a
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function of the transverse confinementL t in terms ofj̄. For a
given wave functionc, the energy is given by the formul
E5*vB

(2c* ¹2c1gvB/2ucu41Vucu2)dr . The soliton-
excitation energy exhibits a linear dependence on the va
tion of the length scale reflecting the localization of the e
citation in one and extension in the other spacial dimens
The SV energy is always lower than the soliton energy a
grows more slowly with the box size, reflecting the expec
logarithmic behavior for large boxes@16#. Below a critical
confinement corresponding to a box width of'6j̄ we do not
find any stationary SV solutions but instead the imagina
time propagation converges to the soliton solution. The lo
rithmic plot of the energy difference between the soliton a
the SV energies shown in Fig. 2~b! very much indicates a
nonanalytic curve joining or curve crossing. Following th
SV solution from wide confinement to the critical point, th
vortex wave function shows an increasingly deformed d
sity and squeezed phase signature~see Fig. 1! and eventually
coincides with the soliton wave function at the critical co
finement.

The band solitons and SV states from Fig. 2~a! are sta-
tionary states. In wide enough confinement, however, b
solitons may exhibit the SI mentioned earlier: Tiny imperfe
tions of stationary band solitons may lead to a transve
modulation and grow during real-time propagation at an i
tially exponential rate. The stability of the stationary sol
tions of the NLSE can be tested in a linear stability analy

FIG. 2. SV and soliton properties as a function of the transve
confinementL t . Part ~a! shows the excitation energies of the st
tionary soliton and SV state. The energy difference is shown o
logarithmic scale in part~b!. The simulations were done in a rec

angular box of size 8j̃364j̃ for different values of the nonlinea
coupling constantg, which changes the effective transverse confin

mentL t / j̄58Ag.
2-2
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SOLITONIC VORTICES AND THE FUNDAMENTAL MODES . . . PHYSICAL REVIEW A 65 043612
employing the famous Bogoliubov equations@19#, which can
be derived from a linear-response expansion of the tim
dependent NLSE@20#. In the units of Eq.~1! these equations
read

Luj~r!2gvB@c~r!#2v j~r!5e juj~r!, ~2!

Lv j~r!2gvB@c* ~r!#2uj~r!52e jv j~r!, ~3!

with L52¹21V(r)12gvBuc(r)u22m, andm is the chemi-
cal potential of the stationary wave functionc(r,t)
5exp(2imt)c(r). The solutions of the Bogoliubov equatio
with eigenvaluese j and eigenvectors (uj ,v j ) have the fol-
lowing interpretation in terms of small-amplitude motio
around a stationary solution of the NLSE@16#: Small posi-
tive e j at positive ‘‘norm’’ h j5*(uuj u22uv j u2)dr describe
small oscillations around the stationary state with increas
energy. Solutions with negative eigenvaluese j and positive
h j are called anomalous modes. They indicate a continu
transformation of the stationary state to a state of lower
ergy. Anomalous modes exist for the trapped vortex as w
as for dark solitons in 1D and merely express the thermo
namic instability of these excitations. Complex or pure
imaginary eigenvaluese j , however, indicate a dynamical in
stability. They further implyh j50 @16,21#.

Figure 3 shows the purely imaginary and anomalous
genvalues of the Bogoliubov equation for a stationary ba
soliton in a rectangular box of dimensionb316j̄ as a func-
tion of the box widthb'L t at constant density. For narrow

traps withb',5.5j̄, we find one anomalous but no comple
eigenvalues, like for 1D solitons. Additionally, the solito
wave function shows no appreciable decay in real-ti

FIG. 3. Bogoliubov spectrum of the stationary soliton in a 2
box as a function of the box width at constant average density.

insets relating to box widths ofb57j̄, 12j̄, and 16j̄ show density
plots of transient patterns in the decay of the perturbed soliton s
~see text! after real-time propagation fort526, 31, and 26 in the

units of Eq.~1!, respectively. The perturbed soliton atb55j̄, on the
contrary, shows no appreciable decay after 100 time units.
imaginary modes are marked according to the nature of the ei
vectoru leading to single-vortex (n), double-vortex (L), or triple-
vortex (,) decay. The anomalous modes of the nodal-plane s
(3) and stationary single-svortex state (!) are also indicated.
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propagation seeded with noise~see insets!. Also collisions of
noisy gray solitons show the robust, particlelike behav
expected from 1D soliton theory@18#. For trap widths 5.5j̄

',b',9.5j̄, one purely imaginary eigenvalue exists in the B
goliubov spectrum. According to the numerical results,
emergence of this imaginary eigenvalue coincides with
emergence of the SV as a symmetry-breaking stationary s
of lower energy than the corresponding band soliton.
creasing the box width, a second and eventually a th
imaginary eigenvalue appears. The stability of the station
soliton was probed using real-time propagation seeded w
0.01% white noise@22#. While there is no appreciable deca
in tight confinement, we clearly find that the soliton instab
ity is associated with the formation of one, two, and thr
vortices in the regimes where one, two, and three imagin
eigenvalues are present as shown in the insets of Fig. 3.
eigenvectorsuj , localized within about one healing lengt
from the nodal line of the soliton, also support this res
@18#. The patterns shown in Fig. 3 are by no means station
but rather form transient states followed by incomplete
currences of the nodal line and eventual further decay wh
vortices move to the edge of the trap and vorticity is d
stroyed. The complicated dynamical patterns showing a m
ture of decay and strong mode coupling are certainly due
energy conservation in the NLSE and to the small scale
the trap used in the simulation where radiated phonons
ger. We expect further stabilization of the vortex patterns
longer traps where energy released in the decay process
distribute itself over a larger area. The observed decay
terns vary depending on the exact form of the initial pert
bation by noise. In contrast to the soliton, the stationary
shows an entirely real Bogoliubov spectrum with o
anomalous mode also shown in Fig. 3. Further, real-ti
propagation of perturbed SVs shows no appreciable

FIG. 4. ~Color! SV in a 3D elongated harmonic trap generat
by decay of a perturbed stationary soliton state. Shown is the
face of constant density~at 0.16 of the maximum density! and a
color-coded plot of the phase in the horizontal plane intersecting
trap center. The transverse confinementL t /j'7.7 was computed by
the maximum value of the line integral*Cj(r )21ds taken along the
transverse dimension, which is more appropriate for measuring
transverse confinement of inhomogeneous condensates than th
width @13#. For details of the simulation see text.
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JOACHIM BRAND AND WILLIAM P. REINHARDT PHYSICAL REVIEW A 65 043612
cay. In this sense, the SV is the more stable object than
stationary soliton.

Finally, we would like to comment on the 3D harmoni
trap geometry studied earlier in the experiment by Ander
et al. @9# and in theoretical work by Muryshevet al. @10# and
Federet al. @11#. Both experiment@9# and theory@11# report
vortex-ring formation during the decay of a stationary solit
~nodal-plane state! in spherical@9,11# and elongated@11# ge-
ometries at fairly high densities, which is indicated by t
nature of complex modes in the Bogoliubov spectrum of
stationary soliton@11#. It has also been pointed out that th
Bogoliubov spectrum becomes entirely real at sufficien
low particle number or high aspect ratio in elongated tra
However, the decay mechanism in the presence of a si
imaginary mode~as shown in Fig. 4 of Ref.@11#! of a sta-
tionary soliton in an elongated trap has not been reveale
far. Imaginary- and real-time propagation clearly show tha
stationary SV solution exists in this regime and that it h
lower energy than the stationary soliton. The density a
phase profile of the stationary SV state are very similar to
dynamically generated pattern shown in Fig. 4. This fig
shows the transient decay product of a perturbed statio
black soliton after real-time propagation for 100 ms, see
initially with 0.01% white noise. The parameters and pote
tial V of this 3D harmonic trap (N5104 atoms of Na! corre-
v.

S.

V.
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spond to Fig. 4 of Ref.@11# at an aspect ratio ofvr /vx54
with vx52p350 rad/s. The corresponding imaginary B
goliubov modeuj has an azimuthal coordinate dependen
of exp(if), wheref is the azimuthal angle, and much re
sembles the first imaginary mode in the 2D box discus
above. The predicted decay of the band soliton into a sin
SV has not been seen, or predicted, before and should
easily observable with current experimental techniques.

Concluding, we have identified the fundamental modes
the SI for transversely confined geometries: Production
one, two, and three vortices correlates with imaginary mo
in the Bogoliubov eigenvalue spectrum. Departure from
quasi-1D regime of stability of solitons is indicated not on
by a linear stability analysis but also by the emergence o
solitonic vortex as a stationary state of lower energy than
corresponding dark soliton. We demonstrated that the de
of a soliton into a single svortex is a fundamental mode
instability in 2D box geometry and 3D elongated harmon
traps.
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results. Support from the National Science Foundation
the Alexander von Humboldt Foundation~J.B.! is gratefully
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