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Dark-soliton creation in Bose-Einstein condensates
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It is demonstrated that stable, standing dark solitons can be created in current dilute-gas Bose-Einstein
condensate experiments by the proper combination of phase and density engineering. Other combinations
result in a widely controllable range of gray solitons. The phonon contribution is small and is calculated
precisely. The ensuing dynamics should be observiabdiu, i.e., without ballistic expansion of the conden-
sate.
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The observation of solitons in Bose-Einstein condensatescales for observation are subsequently on the order of 10
(BEC’s) brings together two heretofore disparate fields ofms, whereas the lifetime of the BEC is on the order of sec-
study: quantum degenerate gag&band exactly integrable onds, precluding the likelihood of observing the effect of
nonlinear systemg2]. Recently, three-dimensional, solitonic quantum fluctuations. Finally, the length scale of these soli-
structures have been observed in weakly interacting atomitonic structures, i.e., the healing length, is so small that
gas BEC's for the first timé3,4]. As fundamentally nonlin- ~ Situ observation of their dynamics is not possible and the
ear, collective excitations of a macroscopic quantum wavé&ondensate must first be expanded by turning off the confin-
they are intriguing in their own right. However, standing ing potential. In the following, a method that remedies all of
solitons in one dimension, which are expected to have &hese difficulties is presented.
wealth of special propertig$], have not yet been created. ~ The NLS may be writterj10] in the form

The Gross-Pitaevskii equation that describes the mean-
field dynamics of a dilute BEC at low temperatufds re- [ = &0t LI D[P+ VOO (X, 1) =i dgh(x, 1), (1)
duces to a one-dimensional nonlinear Sclimger equation
(NLS) when the transverse dimensions of the condensate amghere ¢ is the macroscopic quantum wave functidnis a
on the order of its healing length and its longitudinal dimen-longitudinal confinement length/(x) = (2mé&2/#2)Vo(x) is
sion is much longer than its transverse ofé$ This is  a rescaling of a confining potentisl(x), £=(8wna) *?is
termed thequasi-one-dimensionaljuasi-1D regime of the  the healing lengtha is the s-wave scattering length for bi-

Gross-Pitaevskii equation. If the transverse dimensions Oiflary atomic interactions. andis the mean number density.
the condensate are much less than the healing length, th is normalized to 1 ana has units bf Y2 x has units of

the Gross—Pitaevskii equatior_l no longer applies.and othel ngth, andt=(2mé%/#4)t, is dimensionless, whergy has
physical models must be appli€d]. The recent confinement units of time.
of a BEC in a hollow blue—detuned laser beam demonstrates In particular, we consider the case Rb confined in a
that the quasi-1D regime regime is experimentally realizableboxlike potenti;il withL =100 xm and a transverse length
[8]. In three dimensions solitonic structures are unstable to ; — 2
transverse modulations, but in the quasi-1D regime they ar@ Lt=10 um. For N=1.1x 10,4 atoms andn=N/(LLy),
stable, and are in fact the stationary states of the fucg ~ the effective healing lengtfi.2] is 2.5 um. Thus the trans-
The extent to which quantum fluctuations affect the BECVEIS€ length _Of the (_:onder_lsate_ i8, 4Nh|ch_sat|sf|es the cri-
is an outstanding theoretical questigii]. As dark solitons ~ t€ria of quasi-one-dimensionality as defined above and de-
are solutions to the mean-field theory, substantial instabilitf@iled in Refs[6,10]. As the length scale of solitons is2¢
of dark solitons at low temperature in the quasi-1D regime i@nd the wavelength of the imaging radiation~9.5 um,
an experimental measure of such higher-order effects. ThIS experimentally realizable configuration ensures observ-
present experimental technique for creating solitonic struc@bility without needing to ballistically expand the conden-
tures is based on phase engineering alone, makes additiorte- It also ensures the possibility of phase and density en-
transient density waves, and cannot be used to make a singi#heering of structures on the scale of the healing length by
standing dark soliton. Observations have been made in thre£2€@ns of the dipole potential of laser fields. A key point in
dimensional harmonic geometries or at temperatures fojliS choice of parameters is the use of a boxlike, rather than
which about 10% of the atoms remained uncondensed. Tim@armonic, confining potentigl13]. For harmonic confine-
ment, the Thomas-Fermi radii§] of the condensate scales

asN5, neN/N35, and thereforec N~ Y whereas for box-
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"Present address: INFM—LENS, Largo E. Fermi, 2, 50125 Neglecting the effect o¥/(x) and writing the wave func-
Firenze, Italy. tion as ¢(x,t) = Vp(x,t)exdig(xt)—iut], the single soliton
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FIG. 1. (@) A combination of a boxlike potential and a tightly 20 -0 0 10 x@©) 0 20 410 0 10 x(§)

focused, blue-detuned laser beam is used to engineer the density. . o .
(b) The resulting wave function is phase engineered with a second, FIG. 2. A standing dark soliton is created with the proper com-
far-detuned laser beam, resulting in an initial state very close to &ination of phase and density engineering. In addition to the central

standing dark soliton. dark soliton, characterized bysaphase difference across a density
notch that forms a node, a spray of phonons is emitted at the speed
solution to Eq.(1) takes the form of sound €= +/2) to either side. A second, shallow soliton, emitted

to the left at nearlyc,, offsets the effect of the finite slope of the

1 5o initial phase due to the diffraction-limited fall-off of the phase-
P(X,t)zr{l_z?’ £ secR[ y(x—ct)]}, (28 engineering laser beam.
2%y - width on the order of the healing length, ie. A%,
d(x,t)=tan ! c tanH y(x—ct)]| + o (2b) ~2.5 um, steep walls at-L/2, and a height on the order of

the chemical potentigh=1:

where 20

()

B —x? 2X
29282+ c?(2¢%) =1. (20 Voo=exn o) Tl T
ForL> ¢ Eqgs.(2) are an excellent approximation away from

the walls. The single-particle densip(x,t) is constant ex- =40 were used. It should also be possible to create a density

cept over a density notch of width 41/ and the phase . . ' : . .
changes sharply and monotonically across the notch. Thgotch by adiabatically ramping the intensity of a laser into an

chemical potentiak.=1 in these units and is the speed of ihitially uniform BEC. The resulting deformation dips to

. . ; . . ~1% of the maximum density, or 10% of the maximum
the soliton. The constrairi2c) links the soliton velocityc to . S
. 5 9 . amplitude, as may be seen in Figb)l Because the scale of
its depth Z<y* and thus leaves only a single free parameter

; . - variation of V(x) is <¢, the kinetic-energy term in Eq1)
for.the soliton solutlon.. In the PaSB:O’ 1/7._ V2¢ and the cannot be neglected and the response of the condensate is not
soliton forms a node, is a stationary solution to EL), and

) . in the Thomas-Fermi regime. It is therefore obtained numeri-
IS callgd adark sqhton In the case @Ec<cs,.wh§re Cs cally by imaginary time relaxation of Eql) with Eq. (3).
=2 is the Bogoliubov sound speed, the soliton is a mov-"" At {—0 the focused laser beam is switched off and a
ing density notch and is calledgray soliton In the cas&  ggcong, far-detuned laser pulse of uniform intensity distribu-
—Cs , 1/y diverges and the soliton depth approaches zergjon is shined on one half of the condensate. The pulse du-
Upon reinsertion of constants, it is found thal;  ration is chosen to be shorter than the correlation time of the
=V4mnah/m. The total phase difference across the notchcondensate,t.=¢/cs. This ensures that the light field
[14] is A¢p=2 tan [ V1—(c/cg)?/(clcy)]. changes only the phase distribution and not the density dis-
As is apparent from Eq(2), a soliton requires both a tribution of the BEC. In the simulation it therefore suffices to
nontrivial phase and a nontrivial density profile. The tech-switch on a controllable phasg(x) instantaneously3]:
nique of phase engineering used to make solitonic structures
in previous experimentk3,4] imprinted a constant phase on d(X)=A ¢ tani(2x/AX ;) (4
one-half of a nearly uniform condensate. This resulted in a
combination of transient density waves and one or more grayas used as a model, which represents the diffraction-limited
solitons. We propose instead the following scheme. fall-off of the laser beam over the notch, with a widthof ,
Atoms are condensed into a boxlike trap with a sharplyand a total phase difference af, as may be seen in Fig.
focused, blue-detuned laser beam in the center of the lon§(b), where the parametels¢=7 and Ax,=¢~2.5 um
trap axis, closed in the longitudinal direction by two laserhave been used.
light sheets. Due to a large laser detuning from atomic reso- The resulting notch is both density and phase engineered.
nances, spontaneous processes can be neglected on a timésig. 2 its evolution is shown. FA#'Rb there are 2.27 ms
scale of seconds, which is longer than all relevant timeper simulation time unif10]. WhenA ¢= 7 was used it was
scales. Thus the effect of the laser beam on the condensdigund that the soliton drifted slowly to the left, i.e., was not
atoms can be described by the optical dipole potential, whicltompletely dark. A true standing dark soliton requires a step
is proportional to the local light intensity. In Fig(a the  function in the phase. Therefore, to counter the effect of the
potential used as a model is illustrated; a Gaussian with diffraction-limited fall-off of the second laser beam\ ¢
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=1.05X 7 was used. This creates a second, shallow gray @ p(x Y ) =3
soliton, which carries away the small momentum of the first *
without appreciably deforming the density. Thus a standing,,
dark soliton is successfully created.

As is apparent in Fig. 2, some portion of the initial notch 2
is radiated as phonons. The apportionment of the total energ’
into phonons and solitons may be calculated precisely. Be°
cause the NLS is nonlinear, it is not possible to build any
particular solution by a summation over phonon modes. As 20 -0 0o 10 x@®
phonons and solitons are the fundamental solution types o & o b

0.04
the 1D NLS it is therefore useful to single out their contri- '
bution to the dynamics. The NLS has a denumerably infinites,
number of integrals of motioft]. In the context of the BEC, -
0

0

the first three correspond to normalization, energy, and mo-o
mentum. For the simulations studied herein, it suffices to]0
consider energy.

The second integral of motion of E(L) is 0 e
20 -0 0 10 x@©) 20 <10 0 10 x@©)
L/2 L . . S I .
I,= f dx §2|¢9X¢|2+ —| ¢|4+ V(x)| ¢|2 . (5) FIG. 3. A variety of physically intriguing possibilities arise from
—-L2 2 variations in the technique used to create a standing dark soliton.

(a), (b) The use of density engineering alone creates a pair of equal
AssumingL>¢, the energy of a single soliton is and opposite gray solitons with a widely controllable range of ve-
) locities. (c),(d) Phase engineering with a phase different fram
|¢//|2— E) ©6) creates an asymmetric gray soliton pair. Note the spatial shift inher-
L/ | ent in soliton-soliton interactions.

L
§2|&x$|2+ E

ES:NJ dx

where Eq.(5) has been renormalized to subtract out the con2Ax,=< ¢ was optimal. Note that the full width of the Gauss-
stant background and the potentiflx) has been assumed to ian is 2Ax, . 2Ax,=2¢ produced an additional pair of very
be constant in the region of the soliton. The factorMf shallow gray solitons that would not be observable in experi-
follows from the use of a single, rather thal particle den-  ments. Ax,<§& was sufficient to produce a standing dark
sity for |(x,t)|2. Equations(2) may then be used to obtain soliton, whileL>Ax,> ¢ set the soliton in motion. Finally,
the energy of a single soliton: A ¢~ 7 was required, as expected. It was also found that the
amount of the deformation energy transformed into phonons
was consistently about 40% to 50%. Outside of these param-

~— _ s 3
Ee= L 3CS|S'n(A¢/2)| : (@) eter ranges, a number of intriguing possibilities arose. In the

following a few such possibilities are illustrated.
E. is dimensionless and depends on the line denNitly. If density engineering alone is used, a pair of equal and

The rescalind #2/(2mé&?)]E<= (N/L)*? reinstates the units opposite gray solitons emerge. This effect is illustrated in
of energy. For our choice of parameters, the difference beFigs. 3a) and 3b). The velocities of the gray solitons may,
tween the approximation and an exact expressiorEfors by Eq. (7), be used to determine the total energy of the
negligible and not observable in simulations. phonons. It was found in simulations that within the range of
Conservation of the total energy of the system may b&Ax=0.5 to 2.5, from 40% to 70% of the deformation en-
expressed aEq+Eqo=E+E,+Eq, whereEy, Eq, andE,  ergy was converted into phonons and the remaining energy
are the energies of the initial deformation, the undeformedvas converted into a symmetric gray soliton pair. In general,
background ground state, and the phonons, respectively. By lower energy notch resulted in slower solitons, with a
use of Eq.(5) E4 andE, may be determined in the simula- lower limit on the soliton velocity of~0.45. In previous,
tion. Eg may be calculated from Eq7). With this method it  solitonic-structure experiments, which used phase engineer-
was determined that the total phonon contribution in Fig. 2 igng alone[9], the velocities were 0.%4 to 0.76&¢ and 0.68
39% of the deformation energiiy and the second soliton to ¢, respectivelyf3,4]. By the method of density engineer-
carries away only 1.5% df 4. However, the phonons spread ing a wide range of velocities from 0.d5to ¢, may be
out over the whole box, while the 60% of the energy carriedobtained by adjusting the width or depth and thereby the
by the dark soliton is localized in a region of width2¢  energy of the initial deformation.
=2. Therefore this method of dark soliton creation is highly ~ Another variation on the technique, which uses both den-
efficient and phonons are essentially small fluctuations in theity and phase engineering and a phase differencA @f
density. # , creates an asymmetric gray soliton pair. 60% to 70% of
It is important to explore the robustness of the proposedhe deformation energy is radiated as phonons. For the phase
technique. To what extent does it depend on the parametepsofile of Eq.(4), m<A ¢<2r results in a faster soliton to
of Egs.(3) and(4)? To this end many simulations were per- the right. 0<XA ¢ <7 results in a faster soliton to the left, as
formed that variedAx,, Ax,, andA¢. It was found that is to be expected from the constant phase offset inherent in
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p(x 9 a5 0 posite gray solitons emerge, as has also been predicted else-
where[14]. If phase engineering is added to this scenario, a
central, dark soliton is created in the middle of the trap with
equal and opposite pairs of gray solitons fanning outwards to
either side. These cases are shown in Fig. 4.

In general, the consistent 40—70 % of the deformation en-
ergy radiated into phonons is representative of the difference
in form of the density deformation, which results from the
Gaussian function in Eq3) and the sech function in Eq.
(2a). A different density notch could be expected to result in
a different apportionment of energy. It should also be noted
that solitons are robustly stable structuf&sand, though not
shown here, the introduction of 10% stochastic noise into the
simulations, which models experimental imperfections such
as nonuniformity in the trapping potential, had no observable
" effect on the results.

20 <10 0 10 x(® 20 <10 0 10 x@® In conclusion, a method of creating a single, standing

] ) ) ] dark soliton in a gaseous Bose-Einstein condensate has been
_ FIG. 4. (a),(b) Density engineering a notch wider than the heal- , osenteq. This experimentally realizable method combines
ing length creates a symmetric fan of gray solitaies,(d) If phase phase and density engineering and requires one or two lasers
engineering is added a dark soliton is created in the center of th . . . . .
fan. and a quasi-one-dimensional trap. Variations result in the
creation of gray solitons with a widely controllable range of

] ) velocities.
the wave function. The total phase difference across the two

solitons adds up ta\ ¢. Such asymmetric interactions are  We thank Klaus Sengstock and William Reinhardt for
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