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Dark-soliton creation in Bose-Einstein condensates
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It is demonstrated that stable, standing dark solitons can be created in current dilute-gas Bose-Einstein
condensate experiments by the proper combination of phase and density engineering. Other combinations
result in a widely controllable range of gray solitons. The phonon contribution is small and is calculated
precisely. The ensuing dynamics should be observablein situ, i.e., without ballistic expansion of the conden-
sate.
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The observation of solitons in Bose-Einstein condensa
~BEC’s! brings together two heretofore disparate fields
study: quantum degenerate gases@1# and exactly integrable
nonlinear systems@2#. Recently, three-dimensional, soliton
structures have been observed in weakly interacting ato
gas BEC’s for the first time@3,4#. As fundamentally nonlin-
ear, collective excitations of a macroscopic quantum w
they are intriguing in their own right. However, standin
solitons in one dimension, which are expected to hav
wealth of special properties@5#, have not yet been created

The Gross-Pitaevskii equation that describes the me
field dynamics of a dilute BEC at low temperatures@1# re-
duces to a one-dimensional nonlinear Schro¨dinger equation
~NLS! when the transverse dimensions of the condensate
on the order of its healing length and its longitudinal dime
sion is much longer than its transverse ones@6#. This is
termed thequasi-one-dimensional~quasi-1D! regime of the
Gross-Pitaevskii equation. If the transverse dimensions
the condensate are much less than the healing length,
the Gross-Pitaevskii equation no longer applies and o
physical models must be applied@7#. The recent confinemen
of a BEC in a hollow blue–detuned laser beam demonstr
that the quasi-1D regime regime is experimentally realiza
@8#. In three dimensions solitonic structures are unstable
transverse modulations, but in the quasi-1D regime they
stable, and are in fact the stationary states of the NLS@10#.

The extent to which quantum fluctuations affect the BE
is an outstanding theoretical question@11#. As dark solitons
are solutions to the mean-field theory, substantial instab
of dark solitons at low temperature in the quasi-1D regime
an experimental measure of such higher-order effects.
present experimental technique for creating solitonic str
tures is based on phase engineering alone, makes addit
transient density waves, and cannot be used to make a s
standing dark soliton. Observations have been made in th
dimensional harmonic geometries or at temperatures
which about 10% of the atoms remained uncondensed. T
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scales for observation are subsequently on the order o
ms, whereas the lifetime of the BEC is on the order of s
onds, precluding the likelihood of observing the effect
quantum fluctuations. Finally, the length scale of these s
tonic structures, i.e., the healing length, is so small thain
situ observation of their dynamics is not possible and
condensate must first be expanded by turning off the con
ing potential. In the following, a method that remedies all
these difficulties is presented.

The NLS may be written@10# in the form

@2j2]xx1Luc~x,t !u21V~x!#c~x,t !5 i ] tc~x,t !, ~1!

wherec is the macroscopic quantum wave function,L is a
longitudinal confinement length,V(x)5(2mj2/\2)V0(x) is
a rescaling of a confining potentialV0(x), j[(8pn̄a)21/2 is
the healing length,a is the s-wave scattering length for b
nary atomic interactions, andn̄ is the mean number density
c is normalized to 1 and has units ofL21/2, x has units of
length, andt[(2mj2/\)t0 is dimensionless, wheret0 has
units of time.

In particular, we consider the case of87Rb confined in a
boxlike potential, withL5100 mm and a transverse lengt
of Lt510 mm. For N51.13104 atoms andn̄[N/(LLt

2),
the effective healing length@12# is 2.5 mm. Thus the trans-
verse length of the condensate is 4j, which satisfies the cri-
teria of quasi-one-dimensionality as defined above and
tailed in Refs.@6,10#. As the length scale of solitons is;2j
and the wavelength of the imaging radiation is;0.5 mm,
this experimentally realizable configuration ensures obse
ability without needing to ballistically expand the conde
sate. It also ensures the possibility of phase and density
gineering of structures on the scale of the healing length
means of the dipole potential of laser fields. A key point
this choice of parameters is the use of a boxlike, rather t
harmonic, confining potential@13#. For harmonic confine-
ment, the Thomas-Fermi radius@1# of the condensate scale
asN1/5, n̄}N/N3/5, and thereforej}N21/5, whereas for box-
like confinementj}N21/2.

Neglecting the effect ofV(x) and writing the wave func-
tion asc(x,t)5Ar(x,t)exp@if(x,t)2imt#, the single soliton
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solution to Eq.~1! takes the form

r~x,t !5
1

L
$122g2j2 sech2@g~x2ct!#%, ~2a!

f~x,t !5tan21H 2j2g

c
tanh@g~x2ct!#J 1

p

2
, ~2b!

where

2g2j21c2/~2j2!51. ~2c!

For L@j Eqs.~2! are an excellent approximation away fro
the walls. The single-particle densityr(x,t) is constant ex-
cept over a density notch of width 1/g, and the phase
changes sharply and monotonically across the notch.
chemical potentialm51 in these units andc is the speed of
the soliton. The constraint~2c! links the soliton velocityc to
its depth 2j2g2 and thus leaves only a single free parame
for the soliton solution. In the casec50, 1/g5A2j and the
soliton forms a node, is a stationary solution to Eq.~1!, and
is called adark soliton. In the case 0,c,cs , where cs

[A2j is the Bogoliubov sound speed, the soliton is a mo
ing density notch and is called agray soliton. In the casec
→cs

2 , 1/g diverges and the soliton depth approaches ze
Upon reinsertion of constants, it is found thatcs

5A4pn̄a\/m. The total phase difference across the no
@14# is Df52 tan21@A12(c/cs)

2/(c/cs)#.
As is apparent from Eq.~2!, a soliton requires both a

nontrivial phase and a nontrivial density profile. The tec
nique of phase engineering used to make solitonic structu
in previous experiments@3,4# imprinted a constant phase o
one-half of a nearly uniform condensate. This resulted i
combination of transient density waves and one or more g
solitons. We propose instead the following scheme.

Atoms are condensed into a boxlike trap with a shar
focused, blue-detuned laser beam in the center of the l
trap axis, closed in the longitudinal direction by two las
light sheets. Due to a large laser detuning from atomic re
nances, spontaneous processes can be neglected on a
scale of seconds, which is longer than all relevant ti
scales. Thus the effect of the laser beam on the conden
atoms can be described by the optical dipole potential, wh
is proportional to the local light intensity. In Fig. 1~a! the
potential used as a model is illustrated; a Gaussian wit

FIG. 1. ~a! A combination of a boxlike potential and a tightl
focused, blue-detuned laser beam is used to engineer the de
~b! The resulting wave function is phase engineered with a seco
far-detuned laser beam, resulting in an initial state very close
standing dark soliton.
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width on the order of the healing length, i.e., 2Dxv
;2.5 mm, steep walls at6L/2, and a height on the order o
the chemical potentialm51:

V~x!5expS 2x2

2~Dxv!2D 1S 2x

L D 20

. ~3!

In Fig. 1 and in all simulations the parametersj51 andL
540 were used. It should also be possible to create a den
notch by adiabatically ramping the intensity of a laser into
initially uniform BEC. The resulting deformation dips t
;1% of the maximum density, or;10% of the maximum
amplitude, as may be seen in Fig. 1~b!. Because the scale o
variation of V(x) is &j, the kinetic-energy term in Eq.~1!
cannot be neglected and the response of the condensate
in the Thomas-Fermi regime. It is therefore obtained num
cally by imaginary time relaxation of Eq.~1! with Eq. ~3!.

At t50 the focused laser beam is switched off and
second, far-detuned laser pulse of uniform intensity distri
tion is shined on one half of the condensate. The pulse
ration is chosen to be shorter than the correlation time of
condensate,tc5j/cs . This ensures that the light field
changes only the phase distribution and not the density
tribution of the BEC. In the simulation it therefore suffices
switch on a controllable phasef(x) instantaneously@3#:

f~x!5Df tanh~2x/Dxf! ~4!

was used as a model, which represents the diffraction-lim
fall-off of the laser beam over the notch, with a width ofDxf
and a total phase difference ofDf, as may be seen in Fig
1~b!, where the parametersDf5p and Dxf5j;2.5 mm
have been used.

The resulting notch is both density and phase enginee
In Fig. 2 its evolution is shown. For87Rb there are 2.27 ms
per simulation time unit@10#. WhenDf5p was used it was
found that the soliton drifted slowly to the left, i.e., was n
completely dark. A true standing dark soliton requires a s
function in the phase. Therefore, to counter the effect of
diffraction-limited fall-off of the second laser beam,Df

ity.
d,
a

FIG. 2. A standing dark soliton is created with the proper co
bination of phase and density engineering. In addition to the cen
dark soliton, characterized by ap phase difference across a dens
notch that forms a node, a spray of phonons is emitted at the s
of sound (cs5A2) to either side. A second, shallow soliton, emitte
to the left at nearlycs , offsets the effect of the finite slope of th
initial phase due to the diffraction-limited fall-off of the phas
engineering laser beam.
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51.053p was used. This creates a second, shallow g
soliton, which carries away the small momentum of the fi
without appreciably deforming the density. Thus a stand
dark soliton is successfully created.

As is apparent in Fig. 2, some portion of the initial not
is radiated as phonons. The apportionment of the total en
into phonons and solitons may be calculated precisely.
cause the NLS is nonlinear, it is not possible to build a
particular solution by a summation over phonon modes.
phonons and solitons are the fundamental solution type
the 1D NLS it is therefore useful to single out their cont
bution to the dynamics. The NLS has a denumerably infin
number of integrals of motion@5#. In the context of the BEC
the first three correspond to normalization, energy, and
mentum. For the simulations studied herein, it suffices
consider energy.

The second integral of motion of Eq.~1! is

I 25E
2L/2

L/2

dxFj2u]xcu21
L

2
ucu41V~x!ucu2G . ~5!

AssumingL@j, the energy of a single soliton is

Es.NE
2`

`

dxFj2u]xcu21
L

2 S ucu22
1

L D 2G , ~6!

where Eq.~5! has been renormalized to subtract out the c
stant background and the potentialV(x) has been assumed t
be constant in the region of the soliton. The factor ofN
follows from the use of a single, rather thanN, particle den-
sity for uc(x,t)u2. Equations~2! may then be used to obtai
the energy of a single soliton:

Es.
N

L

4

3
csusin~Df/2!u3. ~7!

Es is dimensionless and depends on the line densityN/L.
The rescaling@\2/(2mj2)#Es}(N/L)3/2 reinstates the units
of energy. For our choice of parameters, the difference
tween the approximation and an exact expression forEs is
negligible and not observable in simulations.

Conservation of the total energy of the system may
expressed asEd1E05Es1Ep1E0, whereEd , E0, andEp
are the energies of the initial deformation, the undeform
background ground state, and the phonons, respectively
use of Eq.~5! Ed andE0 may be determined in the simula
tion. Es may be calculated from Eq.~7!. With this method it
was determined that the total phonon contribution in Fig. 2
39% of the deformation energyEd and the second soliton
carries away only 1.5% ofEd . However, the phonons sprea
out over the whole box, while the 60% of the energy carr
by the dark soliton is localized in a region of width;2j
52. Therefore this method of dark soliton creation is high
efficient and phonons are essentially small fluctuations in
density.

It is important to explore the robustness of the propo
technique. To what extent does it depend on the parame
of Eqs.~3! and~4!? To this end many simulations were pe
formed that variedDxv , Dxf , and Df. It was found that
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2Dxv<j was optimal. Note that the full width of the Gaus
ian is 2Dxv . 2Dxv52j produced an additional pair of ver
shallow gray solitons that would not be observable in exp
ments.Dxf<j was sufficient to produce a standing da
soliton, whileL@Dxf.j set the soliton in motion. Finally
Df;p was required, as expected. It was also found that
amount of the deformation energy transformed into phon
was consistently about 40% to 50%. Outside of these par
eter ranges, a number of intriguing possibilities arose. In
following a few such possibilities are illustrated.

If density engineering alone is used, a pair of equal a
opposite gray solitons emerge. This effect is illustrated
Figs. 3~a! and 3~b!. The velocities of the gray solitons may
by Eq. ~7!, be used to determine the total energy of t
phonons. It was found in simulations that within the range
2Dx50.5 to 2.5, from 40% to 70% of the deformation e
ergy was converted into phonons and the remaining ene
was converted into a symmetric gray soliton pair. In gene
a lower energy notch resulted in slower solitons, with
lower limit on the soliton velocity of;0.45cs . In previous,
solitonic-structure experiments, which used phase engin
ing alone@9#, the velocities were 0.54cs to 0.76cs and 0.68cs
to cs , respectively@3,4#. By the method of density enginee
ing a wide range of velocities from 0.45cs to cs may be
obtained by adjusting the width or depth and thereby
energy of the initial deformation.

Another variation on the technique, which uses both d
sity and phase engineering and a phase difference ofDf
Þp, creates an asymmetric gray soliton pair. 60% to 70%
the deformation energy is radiated as phonons. For the p
profile of Eq.~4!, p,Df,2p results in a faster soliton to
the right. 0,Df,p results in a faster soliton to the left, a
is to be expected from the constant phase offset inheren

FIG. 3. A variety of physically intriguing possibilities arise from
variations in the technique used to create a standing dark sol
~a!, ~b! The use of density engineering alone creates a pair of e
and opposite gray solitons with a widely controllable range of
locities. ~c!,~d! Phase engineering with a phase different fromp
creates an asymmetric gray soliton pair. Note the spatial shift in
ent in soliton-soliton interactions.
1-3
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the wave function. The total phase difference across the
solitons adds up toDf. Such asymmetric interactions a
useful in observing the delay inherent in soliton interactio
@15#.

If again density engineering alone is used, but with t
large a notch, i.e.,Dxv.j, multiple pairs of equal and op

FIG. 4. ~a!,~b! Density engineering a notch wider than the he
ing length creates a symmetric fan of gray solitons.~c!,~d! If phase
engineering is added a dark soliton is created in the center of
fan.
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posite gray solitons emerge, as has also been predicted
where@14#. If phase engineering is added to this scenario
central, dark soliton is created in the middle of the trap w
equal and opposite pairs of gray solitons fanning outward
either side. These cases are shown in Fig. 4.

In general, the consistent 40–70 % of the deformation
ergy radiated into phonons is representative of the differe
in form of the density deformation, which results from th
Gaussian function in Eq.~3! and the sech function in Eq
~2a!. A different density notch could be expected to result
a different apportionment of energy. It should also be no
that solitons are robustly stable structures@5# and, though not
shown here, the introduction of 10% stochastic noise into
simulations, which models experimental imperfections su
as nonuniformity in the trapping potential, had no observa
effect on the results.

In conclusion, a method of creating a single, stand
dark soliton in a gaseous Bose-Einstein condensate has
presented. This experimentally realizable method combi
phase and density engineering and requires one or two la
and a quasi-one-dimensional trap. Variations result in
creation of gray solitons with a widely controllable range
velocities.
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