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Abstract
Accurate predictions of the clearance time of highway 
accidents can help make more effective decisions and 
reduce the economic losses caused by the accidents. 
This paper compares two representations of traffic 
accidents with mixed vehicle types and establishes two 
different classification models. The traffic accident data in 
Shandong Province, China from 2016 to 2019 are used 
as a case study. The interpretability of the parametric 
model indicates that the types of vehicles involved in 
the accident, the type of accident, and the weather can 
significantly affect the clearance time of the accident. 
The results of this study can not only provide evidence 
of whether the types of vehicles involved in the accident 
will affect the accident clearance time, but also provide 
advice for the authorities to quickly clear accident scenes 
and prevent further accidents. 

Keywords: Highway, Accident clearance time, Vehicle 
types, Passenger vehicles

Introduction
As of the end of 2019, the total mileage of highways in 
China reached 149,600 km (Statistical Bulletin, 2020). 
With the highway network growing and the number of 
motor vehicles increasing rapidly, traffic accidents are 
occurring more frequently. While expressways promote 
economic development, they are more prone to major 
traffic accidents than urban roads due to their large traffic 
volumes and fast speeds, causing a large number of 
casualties and huge property losses every year (Lin et 
al, 2016; Park & Haghani, 2016). In the literature, a lot of 
research has been carried out to improve the efficiency 
of expressway traffic safety.

The accident duration prediction can be used to predict 
the clearance time of a certain accident. At the same 
time, real-time event duration prediction can help event 
managers determine the best emergency rescue and 
traffic control strategies (Ji et al., 2008). In addition, based 
on the prediction of accident impacts traffic managers 
can provide the drivers with guidance information so that 
the drivers dynamically correct their routes to reach the 
destination in the shortest time (Baykal-Gürsoy et al., 
2009; Schrank et al, 2015). Thus effectively mitigating 
the traffic congestion and improving the level of accident 
management.

Traffic accident management is of great importance to 
transportation organizations. Delays caused by traffic 
accidents directly increase the possibility of secondary 
accidents, leading to more serious traffic congestions 
(Chung et al., 2015; Mannering et al., 2014; Meng et al., 
2020). For every minute the primary accident remains on 
the highway, the average risk of the second collision will 
increase (Cassandra et al., 2012). Accurately prediction 
of the clearance time of the accidents can facilitate the 
decision making of the transportation management 
department and reduce the adverse effects caused by 
the traffic accidents.

In the past few decades, various statistical models have 
been applied to model and predict the clearance time 
of highway accidents. Regression models are typical 
methods used for estimating and predicting the incident 
duration for highway incidents (Garib et al., 1997; Valenti 
et al., 2010). Hazard-based duration models were also 
widely used to model and predict the accidents duration. 
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Separate hazard-based duration models were developed 
by Nam and Mannering to analyze detection/reporting 
time, response time, and clearance time of highway 
accidents duration (Nam & Mannering, 2000). AFT 
models and topic modeling was also applied to predict 
accident duration, but due to the limitations of the topic 
model, they did not study the impact of every single 
variable (Ruimin et al., 2015). 

Artificial intelligence-based methods were also adopted 
to capture the relationship between accidents duration 
and its influential factors. The K-Nearest Neighbor and 
artificial neural network model are typical methods to 
model the clearance time of highway accidents (Wei & 
Lee, 2007; Wen et al., 2012). Lin et al. (2016) proposed 
an improved model based on M5P. They replaced 
linear regression of each leaf by HBDM algorithm and 
compared the traditional M5P model, HBDM algorithm, 
and the proposed M5P-HBDM. The results showed that 
M5P-HBDM could identify more important and meaningful 
variables. Recently, a complex network algorithm, which 
combines the modularity-optimizing community detection 
algorithm and the association rules learning algorithm, 
was proposed to identify the factors that affect highway 
accidents clearance time (Lin et al., 2014).

Previous studies (Li et al., 2017; Ding et al., 2015) have 
identified various factors that influence the incident 
clearance time, including incident characteristics(e.g., 
number of vehicles involved in an incident, truck/taxi/
bus involvement); weather conditions(e.g., rain, fog, and/
or snow); temporal factors (e.g., time of day, day of the 
week, and/or season); traffic characteristics (e.g., traffic 
volume) and some other factors. In particular, Crashes 
that occur in rainy or foggy weather are more likely to 
have long accident clearance times. And accidents with 
hazardous material dumping may take longer to clear 
(Nam & Mannering, 2000). When a large vehicle is 
involved in a crash, such as large trucks or buses, the 
accident clearance time may be longer (Chung, 2010). 
Traffic flow and upstream and downstream speeds 
around the accident location can also affect accident 
clearance times (Lee et al., 2010).

As expected, incidents involving chemical spills, 
hazardous materials and large vehicles have longer 
clearance time. In addition, incidents during congested 
periods typically take longer to clear (Hou, 2013). While 
the way these factors affect incident clearance times is 
consistent across multiple studies, some studies have 
found the opposite to be true. For example, while incident 
clearance during peak hours typically lasts longer, 

Hojati et al. (2013) observed shorter clearance times for 
incidents that occurred during the afternoon peak hour.

In the previous studies of clearance time prediction, 
researchers have considered the number of vehicles 
involved in the accident, whether there were large 
vehicles (Xia, 2016), and the number of heavy vehicles 
involved in the accident (Xu et al., 2013). Few studies 
have considered different types of vehicles involved 
in the accident to better represent their impact to the 
clearance time of the accidents. Specifically, for the 
same number of vehicles, if the types of the vehicles 
are different, the clearance time of the accident may be 
different. 

This paper considers two different representations of 
vehicle types and measures their impact on predicting 
the clearance time of traffic accidents. A case study 
using the data obtained from the highways of Shandong 
province, China is presented. We introduced the data and 
its preprocessing firstly. When processing data, we delete 
the data with the accident clearance time exceeding 
400 minutes. Because the reasons for the excessively 
long accident clearance time are single and there is the 
possibility of erroneous records. Then two models, the 
generalized linear model and the mixed-effects model, 
are compared for the task of predicting the clearance 
time of traffic accidents. The impact of different types of 
vehicles involved in the accident on the clearance time 
is also analyzed, based on which policy suggestions are 
provided to improve traffic accident management.

Data Collection and Analysis
Accident Database and Variable Definition
The accident data used in this article comes from four 
expressways including G2, G25, G35, and G1511 in 
Shandong Province between 2016 and 2019. These four 
expressways are important arterial roads in Shandong 
Province. In the four years from 2016 to 2019, there 
were a total of 4,255 accidents. The dataset contains 
information about the location, the weather, the time, 
and the vehicles involved in the accident. Based on this 
information, we carry out two preprocessing operations. 
First, we group the time of the accident into four time 
periods to generate four new variables, namely time 
of day1, time of day2, time of day3 and time of day4. 
Second, all the categorical variables are converted into 
dummy variables as shown in Table 1.

There are 29 variables in the extracted data set. In the 
latter two models, we use dummy variables to define the 
types of vehicles involved in the accident, so there are 34 
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variables before the screening variables. 
The dependent variable is binary, with a 
value indicating, “long” or “short”, in which 
“long” refers to the clearance time of the 
accidents is longer than 120 minutes. The 
2009 edition of the Manual on Uniform 
Traffic Control Devices defines accidents 
with clearance duration longer than 120 
min as large-scale traffic accidents (Zhang 
et al., 2012). Large-scale traffic accidents 
can cause more serious congestion and 
economic losses.

There are 28 independent variables, of 
which 6 are continuous variables and 
22 are dummy variables. To alleviate the 
influence of diverse value ranges, we divide 
the variables medium truck flow, large 
truck flow and embedding congestion, 
respectively by 1,000, 10,000, or 100,000 
such that their value ranges are aligned to 
a range from 0 to 10. The dataset used by 
the mixed-effects model is slightly different. 
The categorical variable location is added 
(location contains information on 15 
different areas on the four highways), and 
the weather variable is transformed from 
four dummy variables to one categorical 
variable. The variable are shown in Table 1.

The passenger car unit (PCU) is calculated 
at a later stage. According to the traffic 
volume survey vehicle classification and 
vehicle conversion coefficient, different 
weights are assigned to different vehicle 
types, as shown in Table 2. Then we 
calculate the weighted sum of vehicles 
involved in each accident, as shown in 
Table 3, which represents the number of 
vehicles involved in the corresponding 
accident.

Data Preprocessing
There are 332 records that contain missing 
information, and they are excluded from 
this study. As a result, there are 3923 
remaining data. It is known from the 
accident description that most of the 
accidents with long duration are difficult 
to be clear in a short time, such as the 
spontaneous combustion of the truck, 
collision or rollover of the loaded truck, 

Table 1.  
Variable definition

Variable name Type Description

minivan flow Continuous minivan flow/10000

medium truck 
flow

Continuous medium truck flow/1000

extra large truck 
flow 

Continuous flow of extra large trucks/10000

container truck 
flow

Continuous container flow/1000

embedding 
congestion

Continuous The ratio of the total traffic volume of the road 
network to the total capacity allowed by the road 
network

time of day1 Dummy The accident happened during 6:00~10:00:1;  
other time :0

time of day2 Dummy The accident happened during 10:00~16:00:1;  
other time :0

time of day3 Dummy The accident happened during 16:00~22:00 :1;  
other time :0 

time of day4 Dummy The accident happened during 22:00~6:00:1;  
other time :0

night Dummy 19:00-07:00 :1;  07:00 -19:00 :0

cloudy Dummy Cloudy:1; other weather :0

sunny Dummy Sunny :1; other weather :0

rainy Dummy Rainy /snowy:1; other weather :0

car Dummy The car is responsible for the accident :1; 
Other vehicles are responsible for the accident :0

passenger car Dummy The passenger car is responsible for the accident :1; 
Other vehicles are responsible for the accident :0

truck Dummy The truck is responsible for the accident :1 
Other vehicles are responsible for the accident :0

rear end Dummy The type of accident is rear end collision :1; 
The accident type is other type :0

Crash barrier Dummy The type of accident is guardrail collision :1; 
The accident type is other type :0

spontaneous 
combustion

Dummy The type of accident is spontaneous combustion :1; 
The accident type is other type :0

other types of 
accidents

Dummy Types of accidents except rear end collision, 
guardrail collision and spontaneous combustion :1

pcu Continuous Passenger car unit.

spilled goods Dummy Goods were spilled in the accident :1

car-involved 
accident

Dummy Whether there is a car involved in the accident.

bus-involved 
accident

Dummy Whether there is a bus involved in the accident.

coach-involved 
accident

Dummy Whether there is a coach involved in the accident.

small truck-
involved accident

Dummy Whether there is a small truck involved in the 
accident.

van-involved 
accident

Dummy Whether there is a van involved in the accident.

large truck-
involved accident

Dummy Whether there is a large truck(Semi Trailer) involved 
in the accident.

short clearance 
time

Binary dependent variable Accident duration 1 refers to the 
accident duration is shorter than 120 minutes, and 0 
refers to the opposite.
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and the reason for the error recording is not excluded. 
The clearance time of some highway accidents is even 
more than 720min (12h), so we suspect the possibility of 
wrong records or other objective reasons. The data set 
does not explain in detail the reasons for the excessively 
long clearance time of highway accident, and the data 
is not representative. Because of the particularity of 
these accidents with extremely long clearance time, the 

classification model will have poor performance on such 
cases. Therefore, the accident data with a clearance 
time of longer than 400 min is removed, and finally we 
obtained 3832 observations.

Figure 1 shows the distribution of accident clearance 
time after removing the accident data with clearance 
time longer than 400 min. It can be seen from Table 4 
that the average value of the retained data is 70.21, and 
the median value is 51. Most of the data are within the 
range from 0 to 200 min. With a ratio of 4:1, we obtained 
a training set with 3,000 observations and a test set with 
832 observations.

Variable Selection
It is found that the two variables, i.e., 
vehicle equivalent and large truck flow, 
have a strong correlation with other 
variables. Hence, these two variables 
are removed from the data set. Because 
there are too many variables, the Akaike 
information criterion (AIC) is used for 
variable screening (Akaike, 1974). AIC 
is a standard metric to measure the 
goodness of fit of statistical models. 
It is based on the concept of entropy, 
which can measure the complexity of 
the estimated model and the goodness 
of the model fitting the data. 

The formula of AIC is

		 )ln(2*2 LkAIC −=     	 (1)

where k  represents the number of 
parameters in the fitted model. L 
represents the likelihood of the model.

First, a generalized linear model is 
established which includes all the 

Table 2.  
Weights of different vehicle types

Vehicle type Car Bus Coach Small 
truck Van Large 

truck

weight 1 1.5 1.5 1 1 3 

Table 3.  
Calculation of PCU

Vehicle types Vehicle types Vehicle types pcu
Small truck Small truck Small truck 3

Car Small truck 2

Car Large truck 4

Figure 1.  
Accident clearance time distribution of processed data

Table 5.  
Descriptive statistics of variables left after screening

Variable name Type
Mean  

(percentage 
for dummies)

variance min max

minivan flow Continuous 0.2968 0.0416 0.0002 1.6216

medium truck flow Continuous 1.2900 1.1778 0.0000 9.8170

extra large truck flow Continuous 0.5823 0.1821 0.0001 3.5261

container truck flow Continuous 1.1543 2.3984 0.0000 9.5250

embedding congestion Continuous 1.0440 0.1817 0.0010 3.5020

time of day1 Dummy  0.1683 - 0 1

time of day2 Dummy  0.3852 - 0 1

time of day3 Dummy  0.2578 - 0 1

time of day4 Dummy  0.1887 - 0 1

night Dummy  0.3617 - 0 1

sunny Dummy  0.6665 - 0 1

car Dummy  0.5055 - 0 1

rear.end Dummy  0.7059 - 0 1

Crash barrier Dummy  0.1561 - 0 1

spontaneous 
combustion Dummy  0.0287 - 0 1

pcu Continuous 2.2192 1.5520 1.0000 13.0000

spilled goods Dummy  0.0284 - 0 1

short clearance time Binary - - 0 1

Table 4.  
The maximum, quantile and mean of the accident clearance time of 
the processed data

Minimum 1st-
quantile Median Mean 3rd-

quantile Maximum

1.0 28.0 51.0 70.21 88.0 400.0
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variables except the two highly correlated variables. Then 
use the ‘step()’ function in the R software for variables 
selection. The step function is based on the AIC, and by 
selecting a model which has the smallest AIC, the set 
of variables that contains the most useful information is 
kept. The variables obtained after the variable selection 
are shown in Table 5. There are 17 variables left (not 
including dependent variables), of which 6 are continuous 
variables and the other 11 are dummy variables. The 
mean, variance, and extreme values of the continuous 
variables are also shown in Table 5. 

When we use dummy variables to represent the vehicle 
types involved in the accident instead of the PCU, the 
variables filtered using the AIC are shown in Table 6. 
In this case, there are 17 variables left (not including 
dependent variables), four of which are continuous 
variables, and the other 13 are dummy variables. The 
mean, variance, and extreme values of the continuous 
variables are also shown in Table 6. Although six dummy 
variables were introduced to represent different types 
of vehicles involved in accidents, only the two variables 
car-involved accident and small truck-involved remained 
after the screening.

Methodology
Generalized Linear Model
Logistic regression is a generalized linear model, which 
is commonly applied to binary or multi-class classification 
problems. Moreover, logistic regression can show the 
influence of each independent variable on the dependent 
variable compared to other classification algorithms.

In the generalized linear model, the dependent variable 
Y follows the exponential family distribution. The 
relationship with the covariate PXX ,...,1  is through the 
formula pp XX βββη +++= ...110 . )(xg is the link function.

		  ηµ =)(g 			   (2)

		  )(YE=µ  			   (3)

For Bernoulli distribution, if the probability of Y = 1 is 1p
, then

	 11 ),...,|1()( pXXYPYE n ===  		  (4)

Through Equation 3.2, 

		  1p=µ 				    (5)

In logistic regression, the logistic function is ηη −+
=

e
h

1
1)( , 

and thus )ln( )(1
)(
η
ηη h

h
−= .

It can be found that when η  is in the 
range of negative infinity to positive infinity, 

)(ηh  range from 0 to 1 and increases 
monotonically: when η >0, 5.0)( >ηh when 
η < 0, 5.0)( <ηh .

From Equations 3.1 and 3.4, we have:

	 ηηηµ −+
− ====

e
hgp

1
11

1 )()( .	 (6)

That is

		  )ln()(
1

1
11 p

ppg −= 	 .
	 (7)

Then we get the logistic regression model 
as follows:

	
)ln()ln( 1

1 1

1
η−=− ep

p

 	
pp XX βββη +++= ...110
, 		 (8)

1

1
1 p

p
−

is called the odds, when the value 
is greater than 1, 5.01 >p , we think that 
event {Y = 1} is more likely to happen.

Mixed-effects Model
The principle of the generalized linear 
model has been introduced in (3.1). 
By adding a random effect term iu to 
the model, the conditional distribution 

Table 6.  
Results of logistic regression

Variable name Type
Mean 

(percentage 
for dummies)

variance min max

minivan flow Continuous 0.2968 0.0416 0.0002 1.6216

medium truck flow Continuous 1.2900 1.1778 0.0000 9.8170

container truck flow Continuous 1.1543 2.3984 0.0000 9.5250

embedding 
congestion

Continuous 1.0440 0.1817 0.0010 3.5020

time of day1 Dummy  0.1683 - 0 1

time of day2 Dummy  0.3852 - 0 1

time of day3 Dummy  0.2578 - 0 1

time of day4 Dummy  0.1887 - 0 1

night Dummy  0.3617 - 0 1

sunny Dummy  0.6665 - 0 1

car Dummy  0.5055 - 0 1

rear end Dummy  0.7059 - 0 1

Crash barrier Dummy  0.1561 - 0 1

spontaneous 
combustion

Dummy  0.0287 - 0 1

car-involved 
accident

Dummy  0.6649 - 0 1

small truck-involved

accident Dummy  0.4468 - 0 1

spilled goods Dummy  0.0284 - 0 1

short clearance time Binary - - 0 1
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expectation of the dependent variable ijY , is defined as 
followed:

		  ),|( ijiijij XuYE=µ  			  (9)

The conditional mean value is combined with the 
conditional linear prediction value ijη  through the link 
function :  

		  iijijijij uZXg '')( +== βηµ   		 (10)

Equation (3.9) is the general form of the generalized 
linear mixed model, and ijY : indicates the jth observed 
response variable of the ith category, injmi ,...,1,,...,1 == . It 
is independent under the condition of random effects iu
and follows the exponential distribution family, which can 
be binomial distribution, Poisson distribution, Gamma 
distribution, etc.

ijX indicates the explanatory variables; 
β indicates the fixed effect parameter vector; iu indicates 
the random effect and it follows the multi-normal 
distribution with zero mean and a variance-covariance 
matrix of γ . iu  represents the heterogeneity between the 
classes caused by the hidden factors and the observed 
correlation within the same class and are independent 
of each other between different classes. 

ijZ indicates 
the explanatory variable related to random effects. The 
design matrix has two parts, i.e., fixed effects X and 
random effects Z .

The generalized linear mixed model is also called the 
conditional model. When 1=Z , 

iijij uX += βη ' , is the simplest 
mixed-effects model, namely the random-intercept 
model. iu represents the influence of the ith category 
on the observed value within the class (variation that 
cannot be explained by the covariate can be observed). 

2
uσ  reflects the heterogeneity between different classes.

Due to the non-linear relationship between the dependent 
variable and the independent variables and the existence 
of random effects iu  in the model, it is difficult to estimate 
the parameters of the model. Assume that the likelihood 
function of the ith category is:

   
∏
=

==
in

j
ijiijyiiiyii XuyfXuyfuL

1

),,|(),,|(),( βββ   	 (11)

Suppose the density function ),( Guf iu
of random effects 

iu is, with marginal likelihood function:

      
      	 (12)

γ  is the variance covariance matrix of iu , and is the 
parameter estimate of G . The following likelihood 
function is constructed:

		
),(),( ∏=

i
iLL γβγβ  		  (13)

It can be seen from the above equations that the 
calculation of the likelihood function is much more 
complicated than the linear mixed-effects model, and 
the problem of high-dimensional integration of random 
effects iu needs to be solved. Many approximate inference 
methods for maximizing the likelihood function have 
been proposed, e.g., the main integral approximation 
methods are Laplace approximation (Breslow & Clayton, 
1993), Adaptive Gaussian integration, first-order Taylor 
sequence expansion approximation (Li et al., 2007).

Results Analysis and Disscussions
Model Results with Vehicle Types Encoded as 
Dummies
First, we use dummy variables to encode the types of 
vehicles involved in the accident instead of PCU to build 
the model. Then we use AIC for feature selection. The 
results of the generalized linear model with vehicle types 
encoded as dummies are shown in the Table 7. (Only the 
variables with significance levels above 0.1 are shown 
in the results.) The AIC of the model is 1969.8, and 
thus most of the variables are significant. The variables 
representing the embedding congestion, accident type, 
responsible car type, and whether there were cars or 
small trucks involved in the accident are all significant 
with a level of 99% .

Then we establish a mixed effect model with vehicle 
types encoded as dummies by using these variables 
and location. The variable representing whether it is 
a sunny day is replaced by the variable weather (here 
weather1 represents the sunny day, weather2 represents 
cloudy, weather3 represents the rainy day, weather4 
represents fog and haze, weather5 represents snowy 
day). Moreover, we choose time of day, night, and 
location as random intercept terms to establish three 
random intercept models. 

Use the “anova()” function of the R software to test the 
AIC and significance of the three models. The results 
show that the AIC of the model with location as the 
random intercept term is the smallest, and it is more 
significant than the other two models. The results show 
that the medium trucks flow, minivan flow, container truck 
flow, and extra large truck flow are not significant in the 
model, and it is also found that the time of day is not very 
significant. Therefore we remove these five variables.

Next, we take location as the random intercept term 
and embedding congestion, car1involved accident, and 
spilled goods as the random slope terms to establish 
three generalized linear mixed-effects models. Use 
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the “anova ()” function(analysis of variance or 
deviance tables for one or more fitted model 
objects.) to test the AIC and significance of the 
three models. The results show that the AIC of the 
model with embedding congestion as the random 
slope is the smallest and the most significant. The 
results are shown in Tables 8 and 9. We found 
that the variables including whether the accident 
occurred at night, the weather of the accident, the 
type of accident, the type of vehicle responsible 
for the accident, and whether there were cars or 
small trucks involved accident in the accident, 
were all significant at the 99% level.

Same as the generalized linear model with vehicle 
types encoded as dummies, the coefficients of 
car-involved accident and small truck-involved 
accident of this model are also positive. The 
AIC of this model is 1976.8, which is larger than 
the generalized linear model with vehicle types 
encoded as dummies, meaning that the mixed 
effect model with vehicle types encoded as 
dummies has induced less information loss by 
introducing the random parameters.

Model Results with PCU Equivalents
The logistic regression model with PCU equivalents 
was established with the variables selected by 
AIC. Check the coefficient and significance of 
each variable, the regression results are shown 
in Table 10. The AIC of the model is 1982.3, and 
most of the variables are significant. Embedding 
congestion, accident type, responsible car type, 
and PCU are all significant with a level of 99%. 
The generalized mixed-effects model with PCU 
equivalents was established by using the selected 
14 variables and location. We use time of day, 
night, and location as random intercept terms to 
establish three random intercept models. 

Similarly, we use the “anova()” function of the R 
software to test the AIC and significance of the 
three models. The results show that the AIC of 
the model with location as the random intercept 
term is the smallest, and it is more significant than 
the other two models. The results show that the 
medium trucks flow, minivan flow, container truck 
flow, and extra large truck flow are not significant 
in the model, and it is also found that the time of 
day is not very significant. Therefore these five 
variables are removed.

Table 7.  
Results of logistic regression

Estimate Std. Error z value Pr(>|z|) Significance 
level

(Intercept) 0.7691 0.2859 2.690 0.0071 **

minivan flow -0.8980 0.4078 -2.202 0.0276 *

medium truck 
flow 0.1538 0.0778 1.978 0.0479 *

embedding 
congestion 0.6512 0.1844 3.531 0.0004 ***

night1 -0.4612 0.1614 -2.858 0.0043 **

sunny1 0.3871 0.1243 3.115 0.0018 **

car1 1.5619 0.2530 6.174 <0.0001 ***

rear end1 0.7848 0.1617 4.854 <0.0001 ***

crash barrier 0.7259 0.2087 3.478 <0.0001 ***

spontaneous 
combustion -0.5984 0.2771 -2.160 0.0308 *

spilled goods -1.5372 0.2549 -6.030 <0.0001 ***

car-involved 
accident 1.0538 0.1765 5.970 <0.0001 ***

small truck-
involved 
accident

0.5644 0.2118 2.665 0.0077 **

Null deviance: 2584.3	 Residual deviance: 1935.8	 AIC: 1969.8 
*parameter significant at the 0.1 level;  
**parameter significant at the 0.05 level;  
***parameter significant at the 0.01level.

Table 8.  
The random effects in the generalized mixed-effects model

Group name Variance Std. Error Corr 
Location (Intercept) 0.4820 0.6942

embedding congestion 0.4257 0.6524 -0.9100

Table 9.  
The fixed effects in the generalized mixed-effects model

Estimate Std. 
Error z value Pr(>|z|) Significance 

level
(Intercept) 0.3242 0.2767 1.172 0.2413

night1 -0.6648 0.1232 -5.396 <0.0001 ***

weather2 -0.4750 0.1430 -3.323 0.0009 ***

weather5 -0.9329 0.3235 -2.884 0.0039 **

car1 1.5937 0.2535 6.288 <0.0001 ***

rear end1 0.7616 0.1635 4.658 < 0.0001 ***

crash barrier 0.7175 0.2125 3.376 0.0007 ***

spontaneous 
combustion -0.6111 0.2811 -2.174 0.0297 *

car-involved 
accident 1.1404 0.1745 6.535 <0.0001 ***

small truck-
involved 
accident

0.5751 0.2140 2.687 0.0072 **

spilled goods -1.5597 0.2569 -6.070 <0.0001 ***
AIC: 1976.8      Log-likelihood: -972.4	      Number of observations: 3000 
*parameter significant at the 0.1 level;  
**parameter significant at the 0.05 level;  
***parameter significant at the 0.01level.
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Next, we take location as the random intercept term 
and take embedding congestion, PCU, and spilled 
goods as the random slope terms to establish 
three generalized linear mixed-effects models. We 
then use the “anova ()” function to test the AIC and 
significance of the three models. The results show 
that the AIC of the model with embedding congestion 
as the random slope is the smallest and the most 
significant. The results are shown in Table 11 and 
Table 12. We found the variables representing 
whether the accident occurred at night, the weather 
of the accident, the accident type, the type of vehicle 
responsible for the accident, and the PCU were all 
significant with a level of 99%.

It can be seen from the coefficients that the variable 
coefficients of the fixed effects part of the generalized 
mixed-effects model with PCU equivalents are 
similar to the variable coefficients of the generalized 
linear model with PCU equivalents. Except for the 
significant degree of changes in some variables, 
there is almost no difference. The AIC of this model 
is 2001, which is larger than the generalized linear 
model with PCU equivalents. So the generalized 
linear model with PCU equivalents performs better in 
predicting the clearance time of highway accidents.

Comparison and Discussions
Compared with other weather, the accident duration 
is more likely to be “short” on sunny days. The results 
were the same as those found in previous studies 
(Nam & Mannering, 2000). The results show that 
the highway accidents clearance time attends to 
be “longer” at night. Studies have also found that 
accidents that occur at night are more likely to be 
severe (Ding et al., 2015) 

An accident with a car as the responsible party 
is more likely to last shorter than 120 minutes 
compared with an accident with a truck or a bus 
as the responsible party. The accidents with rear-
ending collisions and crash barrier collisions are 
more likely to have a shorter duration than other 
types of car accidents. When the accident type is 
spontaneous combustion, the clearance time of the 
accident is more likely to be longer than 120min. 
When PCU is larger, i.e., there are more vehicles 
involved in the accident or the vehicle involved in the 
accident is a large truck, the accident clearance time 
is more likely to be “long” which is consistent with 
certain previous studies (Li et al., 2017). If goods 

Table 10.  
Results of logistic regression

Estimate Std. Error z value Pr(>|z|) Significance 
level

(Intercept) 0.0236 0.2389 0.099 0.9213

minivan flow -0.8665 0.4148 -2.089 0.0367 *

medium 
truck flow 0.1939 0.0847 2.289 0.0221 *

extra large 
truck flow -0.5738 0.2723 -2.107 0.0351 *

container 
truck flow -0.0900 0.0394 -2.285 0.0223 *

embedding 
congestion 1.0927 0.2787 3.921 <0.0001 ***

time of day3 0.4052 0.1888 2.146 0.0319 *

night1 -0.5074 0.1603 -3.165 0.0016 **

sunny1 0.3845 0.1233 3.119 0.0018 **

car1 1.7684 0.1654 10.691 <0.0001 ***

rear.end1 1.4421 0.1770 8.149 < 0.0001 ***

crash barrier 0.7678 0.2087 3.680 <0.0001 ***

spontaneous 
combustion -0.6714 0.2781 -2.414 0.0158 *

pcu -0.2633 0.0525 -5.012 <0.0001 ***

spilled goods -1.6344 0.2533 -6.451 <0.0001 ***
Null deviance: 2584.3	 Residual deviance: 1948.3	 AIC: 1982.3 
*parameter significant at the 0.1 level;  
**parameter significant at the 0.05 level;  
***parameter significant at the 0.01level.

Table 11.  
The random effects in the generalized mixed-effects model

Group name Variance Std. Error Corr 
Location (Intercept) 0.4932 0.7023

embedding congestion 0.4456 0.6675 -0.9300

Table 12.  
The fixed effects in the generalized mixed-effects model

Estimate Std. Error z value Pr(>|z|) Significance 
level

(Intercept) 1.2830 0.2024 6.339 <0.0001 ***

night1 -0.8007 0.1201 -6.666 <0.0001 ***

weather2 -0.4939 0.1415 -3.491 0.0005 ***

weather5 -0.9089 0.3177 -2.860 0.0042 **

car1 1.9383 0.1594 12.160 <0.0001 ***

rear end1 1.4573 0.1779 8.194 < 0.0001 ***

crash barrier 0.7504 0.2124 3.533 <0.0001 ***

spontaneous 
combustion -0.6597 0.2812 -2.346 0.0190 *

pcu -0.2524 0.0519 -4.861 <0.0001 ***

spilled goods -1.7033 0.2554 -6.669 <0.0001 ***
AIC: 2000.9    Log-likelihood: -985.5	 Number of observations: 3000 
*parameter significant at the 0.1 level;  
**parameter significant at the 0.05 level;  
***parameter significant at the 0.01level.
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are spilled during an accident, it is more likely that the 
accident lasts longer than 120 minutes. 

In addition, the results show that the heavier the 
embedding congestion is, it is more likely that the 
clearance time of the accident is shorter than 120 
minutes, which is inconsistent with our intuition. An 
explanation is that the heavier the embedding congestion 
is when an accident occurs, the person in charge will 
clear the traffic more efficiently to avoid more serious 
congestion. It can be seen from the model results that 
the variables representing car-involved accidents and 
small truck-involved accidents are significant. A positive 
coefficient means that when a car or a small truck is 
involved in a car accident, it is more likely that the 
accident clearance time is less than 120 minutes. On the 
other hand, if there is a large truck or bus in the accident, 
it may take longer to clear the accident.

Conclusions
This study analyzed the traffic accident data of 4 
expressways including G2, G25, G35, G1511 in 
Shandong Province to predict whether the clearance 
time of a traffic accident is greater than 120 minutes. 
Comparing the results of two generalized linear models 
and two mixed-effects models, we found the factors that 
affect the duration to clear traffic accidents. These factors 
are night, weather, embedding congestion, car, rear end, 
crash barrier, PCU, spilled goods, car involved accident, 
and small truck involved accident.

The results of the four-parameter estimation models 
show that embedded congestion, weather, accident type, 
and accident vehicle type are the factors that affect the 
accident clearance time most significantly. If the weather 
is sunny, it is more likely that the accident clearance 
time is less than 120min. The accident with a car as the 
responsible party is more likely to last shorter than 120 
minutes. The larger the number of vehicles involved 
in the accident is or the greater the PCU is, it is more 
likely that the accident clearance time will be greater 
than 120 minutes. When the type of vehicle involved in 
the accident is a small vehicle, such as a small car or a 
small truck, it is more likely that the clearance time of the 
accident is ‘short’. From the results, when the accident 
involves multiple vehicles or the type of accident is 
spontaneous combustion, the person in charge shall deal 
with the accident scenes as soon as possible. Prevent 
such accidents from causing serious congestion or more 
serious accidents.

Due to the limited data we have, the lane closure type and 
the number of injured are not included. This information 
may affect the duration of highway accidents. In a future 
study, we can collect more data to apply to our model. 
For future work, we are planning to obtain more traffic 
accident data and investigate the application of artificial 
intelligence-based methods for accident clearance time 
prediction. Future studies can compare the fitting and 
prediction Performance of these models, and we can also 
introduce more model evaluation criteria, such as Mean 
Absolute Error (MAE) and Mean Absolute Percentage 
Error (MAPE). Besides, different variable screening 
methods will be explored, as when the variables used 
in the models are different, the factors related to the 
clearance time of the accidents will also be different. 
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